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Abstract

The Computational Plant or Cplant is a commodity-based distributed-

memory supercomputer under development at Sandia National Laboratories.

Distributed-memory supercomputers run many parallel programs simultane-

ously. Users submit their programs to a job queue. When a job is scheduled

to run, it is assigned to a set of available processors. Job runtime depends not

only on the number of processors but also on the particular set of processors

assigned to it. Jobs should be allocated to localized clusters of processors to

minimize communication costs and to avoid bandwidth contention caused by

overlapping jobs.

This report introduces new allocation strategies and performance metrics

based on space-filling curves and one dimensional allocation strategies. These

algorithms are general and simple. Preliminary simulations and Cplant ex-

periments indicate that both space-filling curves and one-dimensional packing

improve processor locality compared to the sorted free list strategy previously

used on Cplant. These new allocation strategies are implemented in Release

2.0 of the Cplant System Software that was phased into the Cplant systems at

Sandia by May 2002.

Experimental results then demonstrated that the average number of com-

munication hops between the processors allocated to a job strongly correlates

with the job’s completion time. This report also gives processor-allocation al-

gorithms for minimizing the average number of communication hops between

the assigned processors for grid architectures.

The associated clustering problem is as follows: Given n points in <d, find

k points that minimize their average pairwise L1 distance. Exact and ap-

proximate algorithms are given for these optimization problems. One of these

algorithms has been implemented on Cplant and will be included in Cplant

System Software, Version 2.1, to be released. In more preliminary work, we

suggest improvements to the scheduler separate from the allocator.
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1 Introduction

As part of the Advanced Simulation and Computing Initiative1 [65], the Department
of Energy Laboratories are purchasing a sequence of increasingly-powerful custom
supercomputers. In a parallel effort to increase the scalability of commodity-based
supercomputers, Sandia National Laboratories is developing the Computational Plant
or Cplant [17, 96]. Although Sandia maintains a diverse set of computing resources,
the tools for managing these resources commonly rely on scheduling/queuing software
such as NQS [28] or PBS [82] to determine which of the available jobs should be run
next. This decision is based on a variety of factors largely motivated by fairness and
policy enforcement such as the job owner’s past use of computing resouces, number of
processors requested, running-time estimates, waiting time, and even day of week and
time of day. When a job is selected to run, the allocator assigns it to a set of processors,
which are exclusively dedicated to this job until it terminates. Until recently this
decision was not based on the locations of the free processors: The allocator simply
verified that a sufficient number of processors were free before dispatching a job.

To obtain maximum throughput, the processors allocated to a single job should be
physically near each other to minimize communication costs and to avoid bandwidth
contention caused by overlapping jobs. Processor locality is particularly important in
commodity-based supercomputers, which typically have higher communication laten-
cies and lower bandwidth than supercomputers with custom networks. For example,
in Cplant supercomputers, where the switches form two or three-dimensional meshes
with toroidal wraps in one or more dimensions2, a good processor allocation forms
a rough subcube of switches. Experiments on Cplant showed that poor allocation
could increase the running time of a pair of high-communication jobs by as much as
a factor of two.

This report describes resource-allocation algorithms to optimize processor locality
in Cplant and other supercomputers. For the problem addressed in this report, the
allocator has no control over the scheduler. Given a stream of jobs from the scheduler,
we wish to allocate processors to maximize processor locality. More precisely, we
address the following problem. Each parallel job j has an arrival time aj (the time
when it is dispatched from the scheduler for processor allocation), a requested number
of processors pj, and a processing time. The user submits an estimated processing
time. The true processing time is known when the job completes. The user’s job may
get terminated if it does not complete by the estimated processing time.

The jobs arrive online, that is, job j is only known to the allocator after the
time aj when it is dispatched from the scheduler. Preemption and migration are not
allowed, that is, once a job is begun it must be executed to completion on the same
set of processors. The objective is to assign a set of processors to each job to optimize
some global measure of locality. For example, if the machine is a mesh, we may choose

1This program was originally called the Accelerated Strategic Computing Initiative
2Some of the oldest systems have more highly-connected irregular topologies.
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to optimize the average expansion of the bounding box, i.e. the ratio of the bounding
box for the allocated processor set to the smallest possible bounding box.

The remainder of the report is organized as follows. Section 2 summarizes the
importance of processor locality. Section 3 describes related work. Section 4 describes
our allocation strategies given a processor ordering. Section 4 also defines a new
locality measure motivated by this work. Experiments demonstrate that the average
number of communication hops between the processors allocated to a job strongly
correlates with the job’s completion time. See for example, Figure 4(a), which is
reproduced from [68].

Section 5 gives processor-allocation algorithms for minimizing the average number
of communication hops between the processors assigned to a job on a grid architec-
ture. In Section 6 we give the solution to the continuum version of this allocation
problem which gives insight into the discrete problem and the properties of a good
processor allocation. Section 7 summarizes our suggested improvements to the sched-
uler separate from the allocator. We conclude with Section 8.
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2 Processor Locality

Shortest-path routes should give the best communication performance when Cplant
nodes are allocated contiguously. In particular, they minimize interjob message con-
tention because most of a job’s messages are routed completely within the piece of the
machine allocated to that job. However, shortest path routes were only guaranteed
on Siberia between processors that are at most three switch hops apart. Thus only
jobs using up to forty-eight contiguous nodes were guaranteed shortest-path routes.
An analysis of job data provided by the PBS scheduler showed that only about forty
percent of the jobs on Siberia are forty-eight nodes or fewer in size. After a thor-
ough analysis of routing on Cplant, we developed general shortest-path routes for
Antarctica which were incorporated in a preproduction release.

These new routes seem to improve Antarctica’s performance independent of the
allocation scheme, and make message-routing behavior more intuitive and predictable.
The job-placement problem becomes easier to approximate, both theoretically (for
automated allocators, see Sections 4 and 5) and in practice when users are allowed
to choose processor allocations by hand.

We also experimented with job placement on Siberia, the Cplant machine for which
the most documentation was available. We found that contiguous node allocation with
low aspect ratio resulted in the best performance for communications-intensive jobs.
The results seem to generalize to Antarctica, one of the current Cplant machines.
Siberia was dismantled shortly after our experiments.

We now provide some details of these results with respect to the consequences of
routing and processor allocation.

2.1 Routing

The router is a crucial factor in the difficulty of the resulting node allocation prob-
lem. The interprocessor routes generated for Siberia by the Myricom program sim-
ple routes are not shortest paths. In the worst case, some processors that are only
four switch hops apart have routes that are fourteen switch hops long. Instead of
traversing the torus in the short directions, two hops along each axis, they traverse
the torus in the long directions, eight and six hops. This is a result of the Siberia
switch numbering and the Up*/Down* algorithm simple routes uses to build routes.
It would be interesting to investigate the general effect of node and switch numberings
on the routes generated by the Up*/Down* routing software.

Longer paths result in increased message latencies from both additional physical
delays and additional message traffic. Experiments on Siberia indicate that both the
lengths of the routes and the volume of message traffic can affect the performance of
message-intensive jobs. An increase of ten hops can result in an increase of twenty
to eighty percent in the time to complete a message intensive job depending on the
volume of other message traffic.
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Since the length of the routes also affects the complexity of the node allocation
problem, we have modified the Myricom software to bias it toward short routes. While
studying simple routes, we discovered a command line option for shortest path routes.
This was undocumented and not known to the Cplant developers. Unfortunately, the
resulting shortest path routes can deadlock.

Dally and Seitz[33] give an algorithm for deadlock-free shortest-path routing in
k-ary n-cubes that we extended to Cplant. The Siberia switch topology is almost a
ten-ary two-cube, and the Antarctica switch topology is almost an eight-ary three-
cube. The paper’s k-ary n-cubes have single unidirectional links between nodes. We
must split the single links into two virtual links. Cplant has two bidirectional links
between switches. A specific node (switch) and link numbering is required for the
Dally-Seitz algorithm. We investigated the extension of this routing algorithm to
bidirectional links. The correctness proofs for the algorithm hold for bidirectional
links. We implemented the routing algorithm in the Dally and Seitz paper with
the straightforward extension to bidirectional links. The Myricom program deadlock
has declared that the resulting routes for Siberia ”cannot deadlock.” Thus we have
computed shortest-path routes that cannot deadlock.

The algorithm required a node/switch numbering that was different from Siberia’s.
We generated the routes for Siberia with the required numbering and then mapped the
new numbering back to the Siberia numbering. Based on this generalization of Dally
and Seitz routing for Siberia, a three-dimensional extension of our work provided
shortest-path routes for Antarctica [34]. Recent experiments on Antarctica indicate
that these routes may decrease completion time for some application codes by at least
fifty percent over the routes generated by Myricom’s simple routes program [104].

Based on this work in Cplant routing, we were also able to have an impact on
the routing for Red Storm as documented in [67]. The Red Storm routing work was
funded by CSRF.

2.2 Processor Allocation

We experimented with job placement on Siberia, the Cplant machine for which the
most documentation was available. The results seem to generalize to Antarctica.

We used a Paragon communications test suite. The communications test suite
performs one hundred iterations of ping-pong timing, exchange timing, ring timing,
broadcast timing, and all-to-all timing. We measured communication overhead when
multiple applications concurrently execute on Siberia. In particular, we compared the
effect of low aspect ratio versus high aspect ratio for contiguous processor allocation
and we compared contiguous versus non-contiguous processor allocation.

For contiguous processor allocation, we found that low-aspect-ratio jobs completed
in less than ninety percent of the time of the high-aspect-ratio jobs, see Table 1. For
thirty-two nodes, the low-aspect-ratio job was run on a ring of four switches, and the
high-aspect-ratio job was run on a line of four switches. For the sixty-four node job,
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Number of Nodes “Square” Placement (sec.) “Rectangular” Placement (sec.)

32 125 141
64 308 357

Table 1: Aspect Ratio Communications Test Completion Times

the low-aspect-ratio job was run on eight out of nine switches in a three-by-three grid
of switches, and the high-aspect-ratio job was run on a two-by-four grid of switches.

Number Single Two
of Nodes Contiguous Job Non-Contiguous Job Non-Contiguous Jobs

4 1
2

switch 1
4

of 2 switches 9 1
4

each of 2 switches
hops apart 9 hops apart

8 1 switch 1
2

of 2 switches 11 1
2

each of 2 switches
hops apart 11 hops apart

16 2 adjacent 1
2

of 2 pairs of 1
2

each of 2 pairs of
switches adjacent switches adjacent switches

9–12 hops apart 9–12 hops apart
32 ring of 4 1

2
of 2 rings of 4 1

2
each of 2 rings of 4

switches switches 4–12 hops switches 4–12 hops
apart apart

64 8 of 9 switches 1
2

of 16 of 20 1
2

each of 16 of 20
in 3x3 grid of switches in 4x5 grid switches in 4x5 grid
switches of switches of switches

Table 2: Locality Communications Test Node Allocations

In the case of contiguous versus non-contiguous processor allocation, we found
that the contiguous jobs were completed in approximately sixty to ninety percent of
the time of the non-contiguous jobs, depending on the number of nodes used and other
jobs on the machine. (See Tables 2 and 3.) The one anomaly occurs with sixty-four
nodes and a single non-contiguous job, but in that case even though the processors
were not contiguous, the switches were contiguous. Furthermore, none of the jobs
interfered with each other. Perhaps the communications traffic for the job was high
enough that spreading it out over more switches resulted in faster completion. Moore
and Ni observed the same effect in their simmulations [80]. Note that with two non-
contiguous sixty-four node jobs interfering with each other, the anomaly disappeared.
This anamoly is not expected to occur frequently.

Traffic load could also explain the similar results for the single and double non-
contiguous thirty-two node jobs. The single job was run during user time with other
jobs, but the double jobs were run during system time without other jobs, because

13



Number Contiguous Single Non-Contiguous Two Non-Contiguous
of Nodes Job (sec.) Job (sec.) Jobs (sec.)

4 25 29 44
8 50 58 67

16 73 90 108
32 125 154 156
64 308 282 415

Table 3: Locality Communications Test Completion Times

the interactive partition of Siberia was usually only thirty-two nodes. Note that the
routes on Siberia most likely had an effect on these results also.

As mentioned above, the routing is a crucial factor in the difficulty of the resulting
scheduling and node allocation problem. If the routes are shortest paths, we can use
bin packing. If they are not, we must find minimum-weight cliques of a specific
size. While both problems are NP-complete and therefore equally difficult to solve
exactly, their approximability is quite different. Bin packing can be approximated to
a constant factor from optimal in polynomial time [31]. The best known polynomial
time approximation algorithms for the general unweighted clique problem achieve an
approximation ratio of n1−ε [16], and unless NP = coR, clique is hard to approximate

within a factor n
1

2
−ε for any ε > 0 in polynomial time [52]. Even constructing the

graph for the clique problem would be time-consuming and difficult since it would
require knowledge of the exact Cplant interconnection.
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3 Related Work

Initial processor-allocation algorithms allocated only convex sets of processors to a
job [15, 24, 70, 106]. Doing so reduces interjob communication contention compared
to random assignment, since each job’s communication is routed entirely within the
set of processors assigned to that job. Other researchers have shown in a variety of
studies that poor interprocessor communication can reduce throughput [9, 73, 74, 81].
Unfortunately, requiring that jobs be allocated to convex sets of processors reduces
the achievable system utilization to levels unacceptable for any government-audited
system [63, 101].

The simulation-based investigations of Subramani et al. [101] show that fragmen-
tation is necessary for high performance. Their work is directly motivated by the
Cplant system, though some of it can be applied to more general systems. They
investigated the effect on system throughput of a policy forbidding fragmentation,
using trace files from the Cornell Supercomputing Center. In their simulation, they
queued jobs until a set of contiguous processors were available, scaling the running
times down to indicate the benefit of contiguous allocation. They determined that
fragmentation must cause at least a factor-of-two slowdown in order for the benefit of
completely contiguous allocation to compensate for the loss of processor utilization.
Thus, any real system must allow for fragmentation.

More recent work [22, 68, 71, 75, 101] allows discontiguous allocations, attempting
to cluster processors and minimize contention with previously-allocated jobs. Mache
and Lo [73, 74] proposed various metrics to measure the quality of a discontiguous
allocation, including average number of communication hops between processors as-
signed to the same job. Subramani et al. [101] investigated a strategy that allows
fragmentation, motivated by the buddy strategy for memory allocation. They con-
sidered two and three dimensional meshes. The machine is subdivided geometrically.
For example, two halves of the machine are a buddy pair, two quarters within the half,
etc. Jobs are allocated to these predefined subblocks. Their system holds some jobs
back rather than fragmenting them. This buddy approach does not directly apply to
our problem because the allocator cannot ever delay jobs.

A problem closely related to Cplant processor allocation is memory allocation. In
this problem there is an array of memory, and contiguous sub-arrays are allocated
and deallocated online [72, 90, 91]. One objective is to minimize the highest memory
address used and consequently the required memory size. Memory allocation differs
from processor allocation because memory allocators leave empty space to guarantee
contiguity and are allowed to refuse requests that do not fit contiguously.

Another related problem is online bin packing. In bin packing, the objective is
to pack a set of items with given sizes into bins. Each bin has a fixed capacity
and cannot be assigned items whose total size exceeds this capacity. The goal is
to minimize the number of bins used. The off-line version is NP-hard [45] and bin
packing was one of the first problems to be studied in terms of both online and
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offline approximability [55, 56, 57]. Multi-dimensional bin packing, where the items
and bins are hyperrectangles, has also been studied. The seminal offline and online
results appear in [25, 27], while the latest results are in [97]. For a more detailed
review of bin packing, see the surveys [26, 32]. Bin packing results cannot be directly
applied to our problem since we have only a single “bin”. Also objects can leave the
system, creating multiple holes within this bin because jobs cannot migrate.

There is a large body of work on scheduling and online scheduling, in particular.
We do not attempt to review all this work here, but refer the reader to the survey of
Sgall [98].

3.1 One-Dimensional Reduction

Other researchers have used space-filling curves for a variety of problems. Originally,
space-filling curves were introduced by Hilbert [53] and Peano [85]. Recent presen-
tations appear in [39] and [94]. Hilbert curves have been shown to preserve several
measures of ”locality” [46, 79]. An alternative with better performance in two dimen-
sions is given in [83]. Generalizations of Hilbert curves to higher dimensions are given
in [1]. Specific applications include matrix multiplication [23, 43], domain decomposi-
tion [3, 49, 86], and image processing [2, 4, 59, 60, 77, 102]. They are also a standard
tool in the creation of cache-oblivious algorithms [13, 14, 18, 44, 87, 88], which have
asymptotically optimal memory performance on multilevel memory hierarchies while
avoiding memory-specific parameterization.

Our work adapts several of the algorithms for one-dimensional online bin packing.
A common feature of these algorithms is they keep a list of partially-filled bins.
Arriving objects may be placed in one of these bins (assuming they fit) or they may
be placed in a new bin, which is then added to the list. The First Fit algorithm [55]
places a new object in the first bin in which it fits. Best Fit [55] places a new object
in the bin whose remaining space will be smallest. When the bins and objects have
integral sizes, the more complicated Sum of Squares algorithm [30] is also available.
This algorithm bases its decisions on a vector N , where N(i) is the number of bins
with remaining size i. It places a new item in the bin which minimizes the resulting
value of

∑

N(i)2. This allocation policy encourages a variety of sizes of unallocated
regions. When the input comes from a discrete distribution, this algorithm has near-
optimal behavior [11, 29].

3.2 Minimizing the Number of Communication Hops

3.2.1 Processor Allocation

The processor allocation algorithm most closely related to our work was proposed
by Mache, Lo, and Windisch [75]. This algorithm, called MC, assumes that jobs
request processors in a particular shape, such as a 4×6 submesh. Each free processor
evaluates the quality of an allocation centered on itself. It does so by counting the
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Allocated processor

Free processorA

Figure 1: Illustration of MC: Shells around processor A for a 3 × 1 request.

number of free processors within a submesh of the requested size centered on itself and
within “shells” of processors surrounding this submesh. The processors are weighted
by the shell containing them; 0 for the initial submesh, 1 for the first shell out, 2
for the second, and so on. The sum of the weights gives the cost of the allocation.
The algorithm chooses the allocation with lowest cost. This is illustrated in Figure 1,
which is reproduced from Mache et al. [75]. The work of Krumke et al. [64] implies
that MC is a 4-approximation for average pairwise distance when shell 0 is a 1 × 1
submesh (a reasonable choice when a desired shape is not given).

Krumke et al. consider the discrete problem of selecting a subset of k points
from a set of n points to minimize their average pairwise distance. They prove a 2-
approximation for the case when the interpoint distances obey the triangle inequality
and prove hardness of approximation for arbitrary distances.

3.2.2 Related Problems

The maximization version of our problem, where the objective is to pick k points from
a set of size n so that the pairwise distance is maximized, is called maximum dispersion
and has been studied with the motivation of minimizing interference between the
selected points. When the edge weights do not necessarily obey the triangle inequality,
Kortsarz and Peleg [62] give an O(n0.3885)-approximation. Asahiro et al. [7] improve
this to a constant factor in the special case when k = Ω(n) and Arora et al. [5]
give a polynomial-time approximation scheme (PTAS) when both |E| = Ω(n2) and
k = Ω(n). When the edge weights obey the triangle inequality, Ravi et al. [89] give a
4 approximation that runs in O(n2) time and Hassin et al. [51] give a 2 approximation
that runs in O(n2 + k2 log k) time. For points in the plane and Euclidean distances,
Ravi et al. [89] give an approximation with performance bound arbitrarily close to
π/2 ≈ 1.57. When L1 distances are used, Fekete and Meijer [40] give an optimal
algorithm for fixed k and a PTAS when k is part of the input. Their PTAS is similar
to one of ours given in Section 5.

Another problem related to processor allocation is min-sum k-clustering, also
called minimum k-clustering sum. This problem involves separating a graph into
k clusters to minimize the sum of pairwise distances between nodes in the same
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cluster. It differs from our problem in that we are asked to find a single cluster of
a given size and our performance does not depend on the pairwise distance between
processors not selected. For general graphs, Sahni and Gonzalez [95] showed that the
min-sum k-clustering problem is NP-hard to approximate within any constant
factor for k ≥ 3. In a metric space, the problem is easier to approximate. Guttmann-
Beck and Hassin [50] give a 2-approximation using ideas somewhat similar to those
presented in this paper. Indyk [54] gives a PTAS for k = 2 and Bartel et al. [8] give
an O(1/ε log1+ε n)-approximation for general k.
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4 One-Dimensional Reduction

The thesis of this section is that processor locality can be achieved in massively parallel
supercomputers using simple, one-dimensional allocation strategies. This approach is
applicable even when the processors are connected by irregular, higher dimensional
networks. We accomplish this reduction using a space-filling curve which imposes
an ordering on the network of processors such that locations near each other on the
curve are also near each other in the network of processors.

In Cplant supercomputers, the switches are usually connected by two- or three-
dimensional meshs with toroidal wraps in one or more dimensions, but some of the
oldest systems have more highly-connected irregular topologies. We used Hilbert
curves (also called fractal curves) in two dimensions and found an integer program
for general networks. We present preliminary experimental results and motivating
simulations for two and three dimensional meshes.

The remainder of the section is organized as follows. Subsection 4.1 gives the base-
line Cplant allocation strategy which is a one-dimensional reduction. Subsection 4.2
describes our processor ordering. Subsection 4.3 describes our allocation strategies
given a processor ordering. Subsection 4.4 summarizes our simulations. Subsec-
tion 4.5 describes our experimental results. Subsection 4.6 offers some concluding
remarks. Some of these results were previously published in Leung et al. [68].

4.1 Baseline Cplant Allocation

Our test Cplant system, Zermatt, is a two dimensional toroidally-wrapped mesh. The
Cplant Release 1.9 default allocator uses a sorted free list based on a left-to-right, top-
to-bottom linear processor order. When a job j requiring pj processors is dispatched
by the scheduler, the allocator queries the system to determine which processors are
free and gathers these processors into a sorted list. Job j is allocated to the first pj

processors in the list. These processors may be far apart with respect to the linear
order (and the real machine), even if there is a contiguous piece of sufficient size
available later in the list.

We use the Release 1.9 default Cplant system as our baseline against which to
measure improvement.

4.2 Transforming to One-Dimensional Allocation

The first part of our one-dimensional allocation algorithms is to transform the al-
location problem into a one-dimensional setting. As with the current Cplant node-
allocation algorithms, we impose a linear ordering on the processors. We use a Hilbert
curve, rather than an arbitrary order or sorting by row and column. We then allocate
to obtain locality within this linear ordering.

The Hilbert curve only applies to grid topologies. We considered the problem of
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finding good one-dimensional orderings for general parallel interconnection topologies
and formulated this problem as an integer program.

Given a processor graph G = (V, E),

min
n
∑

k=1

wt(k)
∑

|j−i|=k

dist(v, w) ∗ zivjw

subject to:
∑

v∈V

xiv = 1; i = 1 . . . n

n
∑

i=1

xiv = 1; ∀v ∈ V

∑

v∈V

zivjw = xjw; i, j ∈ 1 . . . n; w ∈ V

n
∑

i=1

zivjw = xjw; j ∈ 1 . . . n; v, w ∈ V

zivjw = 0; dist(v, w) > |j − i|
zivjw, xij ∈ {0, 1}.

Variables xiv = 1 if vertex v is the ith vertex in the processor order and xiv = 0
otherwise. Variables zivjw = xiv ∧ xjw logically. If two processors’ ranks in the one-
dimensional ordering differ by k, then their contribution to the objective function
(which we minimize) is a parameter w(k) times their distance in the graph. The
parameter w(k) decreases rapidly (e.g., inverse exponentially) with k, so that close
pairs in the linear order are coerced to be close physically. We can also use this
objective function to compare different curves for a given topology.

The above integer-programming problem for computing a good one-dimensional
ordering is NP-complete since it is a generalization of the Hamiltonian path (HP)
problem. This problem is HP if we set w(k) = 0 for all k > 1, and w(1) = 1. The
graph has a Hamiltonian path if and only if the integer program has a solution with an
objective function value of n−1 where n is the number of nodes in the graph. Though
the problem is NP-complete we may be able to solve particular instances optimally or
to within a provable instance-specific error tolerance using PICO (Parallel Integer and
Combinatorial Optimizer), a massively-parallel branch-and-bound code developed at
Sandia National Laboratories and Rutgers University. PICO includes a (branch-and-
cut) mixed-integer program solver. Though this computation may be time-consuming,
it is performed only once for any given physical machine and choice of w(k).

4.3 One-Dimensional Allocation Strategies

The second part of our algorithm is how processors from the linear order are se-
lected. We modify existing memory-allocation and bin-packing algorithms for the
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Cplant processor-allocation problem. The modification is not a straightforward gen-
eralization because it is not required (although desirable) that processors be allocated
contiguously. We use analogs to bin-packing algorithms when processors can be allo-
cated contiguously. The intervals of contiguous free processors are analogous to free
space in unfilled bins. However, we must determine a different allocation strategy
when there is no contiguous interval of sufficient size.

Span Metrics Our one-dimensional processor-locality metric is motivated by a
linear or ring topology. Let rp be the rank of processor p in the linear ordering. This
will be an integer in the range 1, . . . , |P |, where P is the set of processors. Let Mj be
the set of processors assigned to job j. The linear span, s`

j of these processors is the
number of processors potentially involved in message propagation/delivery for job j if
the processors are connected only in a line. That is, s`

j is the maximum difference in
rank between any pair of processors assigned to job j (plus one): s`

j = maxp∈Mj
rp −

minp∈Mj
rp + 1. All processors with ranks between this minimum and maximum

rank (including the endpoints) are involved in routing a message between these two
processors. These are the processors “owned” by job j plus those “trapped” between
pieces of job j. The ring span sw

j is a measure of locality if the processors are connected
in a ring, again corresponding to the processors owned by job j and those trapped by
these segments. Computationally, it is easier to determine the size of the largest “free”
set of processors, accounting for the ring wraparound, and subtract it from the number
of processors. Let rj,i be the ith-smallest rank of a processor in Mj for i = 0 . . . pj −1.

Then we define sw
j = |P | − max(max

pj−2
i=0 rj,i+1 − rj,i − 1, |P | − 1 − rj,pj−1 + rj,0). In

this section, we use ring span which we call span and denote sj for brevity. Span sj is
a measure of the processor locality of job j for more general topologies provided the
space-filling curve closely reflects processor locality. The integer program described
in Subsection 4.2 computes a processor ranking for ring span provided difference in
rank is computed as the minimum distance around the ring.

In this section we test heuristic methods for span minimization. Minimizing met-
rics based on span is computationally difficult. Examples of such metrics include the
sum of the spans of jobs (

∑n
i=1 si), the max of the spans of jobs (maxn

i=1 si), the sum
(resp. max) of the spans divided by the requested number of processors (

∑n
i=1 si/pi),

the sum (resp. max) of the spans weighted by the processing times (
∑n

i=1 siti), etc.

Strategies When job j is dispatched, we determine if there is a contiguous inter-
val of free processors large enough to run job j. When a job cannot be allocated
contiguously, it is allocated across multiple intervals. We choose the allocation that
minimizes the span of the job. In a tie we start the job at the smallest rank possible.
When a job can be allocated contiguously, we choose which interval to use based on
adaptations of one-dimensional bin-packing algorithms. We consider three strategies:

• First-Fit Allocation – Allocate j to the first interval that is large enough.
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• Best-Fit Allocation – Allocate j to the interval that minimizes the number of
unallocated processors remaining in the interval.

• Sum-of-Squares Allocation – For each interval to which j could be allocated,
determine the number of intervals of each size that would remain. Allocate j
to the interval that minimizes the sum of squares of these numbers of intervals.

Heuristic (total allocation 32 nodes 32 nodes 64 nodes 64 nodes
and load time in seconds) x 4 MB x 6 MB x 4 MB x 6 MB

Free List (no curve) 6.58701 7.26286 7.31679 8.26224
Free List (s curve) 6.73076 7.87602 7.66293 8.92789
First Fit (no curve) 6.53511 8.25920 8.10882 8.54911
First Fit (s curve) 6.66584 7.67763 7.47365 8.76033
Best Fit (no curve) 7.01775 7.49869 7.22588 8.47155
Best Fit (s curve) 8.35122 8.83040 9.05512 9.61046
Sum of Squares (no curve) 6.68588 8.04053 7.26856 8.36683
Sum of Squares (s curve) 6.51863 7.88177 7.78887 9.18457

Table 4: Total allocation and load time for scheduled jobs.

All of these strategies are easy to implement and run quickly [92]. See Table 4
which is reproduced from the appendix of [92]. The gains in system throughput
(described in Subsection 4.6) far outweigh the additional computation time of the
allocator.

4.4 Simulations

To test our one-dimensional allocation algorithm, we built an event-driven Cplant
simulator, which tests the allocation strategies from Subsection 4.3 on space-filling
curves. The objective of the simulator is to exhibit tendencies rather than to predict
running times precisely. Our simulations suggested that one-dimensional allocation
strategies coupled with space-filling curves yield processor locality in higher dimen-
sions. A variety of performance metrics gauge the processor locality.

With this simulator, we were also able to study the throughput of a fixed number
of processors partitioned into various numbers of clusters [20]. The study was used
to determine in part the configuration of the Sandia Institutional Cluster due to go
online at the end of 2003.

Trace Files The Cplant simulator was run on traces from October, November, and
December 2000. These trace files contain data about all jobs submitted to Alaska, a
Cplant machine configured as a heavily augmented two dimensional mesh with 592
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compute processors. The trace file includes the times that the jobs were dispatched
from the scheduler, the number of processors requested, and the actual running times.
These traces did not contain the processors on which the job was actually run so we
cannot compute the fragmentation/runtime environment of these jobs.

From a trace it is hard to predict how the running time of the jobs would change
if the allocation were different because the running times depend on factors that
are hard or impossible to model. These factors include the processor allocation, the
communication patterns of the jobs, the overlaps of the jobs, and the properties of
the communication network.

Rather than make potentially spurious estimates about the change in the running
time of the job with different allocations, our simulations hold the running times
constant and use metrics based on processor locality. The assumption is that increased
locality improves performance, but that the actual speed-ups should be determined
through experimentation.

We transformed the traces into many inputs that model different workloads. We
developed one parameterized set of inputs by increasing or decreasing the running
times of the jobs by a factor that we call the work multiple. All the jobs were
increased by this work multiple. Increasing running times makes processors busier
since jobs are in the system for a longer amount of time. Note that we do not change
release times so that the interaction between jobs are different. We developed a second
set of parameterized inputs by duplicating jobs and perturbing the arrival times; the
number of times that a job is duplicated is called the replication factor . The results
for both types of inputs were similar, so we report only the work-multiple results.

Metrics One-dimensional metrics include the average span and the average span
divided by the number of processors (stretch-span). Three-dimensional metrics in-
clude the average size of a bounding box (size of the region defined by the maximum
difference between the x, y, and z dimensions of the job allocation), the average sum
of the dimensions of the bounding box , the average size of the bounding cube, the
average number of connected components per job, as well as metrics based on the
maximum and sum-of-squares of these parameters as well as metrics weighted by the
running times or divided by the number of processors.

Simulator The simulator assumes a single 8x8x5 grid with one processor per vertex,
for a total of 320 processors. This topology is a simplification of the production Cplant
architecture at the time the traces were obtained.

Our simulator models the Cplant job queue and scheduler so that the workloads
are similar to those on Cplant. When a job arrives it is placed in a job queue. The
job queue is sorted first by number of requested processors and then by requested
processing time. (Thus, fairness between users and different night and day priorities
are not modeled.) Periodically, the scheduler polls to determine which processors are
free to execute jobs, and jobs are removed from the front of the queue.
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Figure 2: Comparison of one-dimensional allocation heuristics under different work-
loads.

Results Our results suggest that one-dimensional allocation strategies coupled with
space-filling curves yield processor locality in higher dimensions. We tested a variety
of performance metrics; for the sake of brevity, only a few representative results appear
in Figure 2. The x-axes plot the work multiple, where we simulate the strategies on a
range of workloads. The top plot gives the resulting average bounding cube divided
by the smallest bounding cube. The bottom plot gives the resulting average span of
jobs.

We do not know how much the increased locality speeds up the running time. How-
ever, the work-multiple parameterization demonstrates that as workloads increase, it
becomes harder to obtain processor locality and as workloads decrease it becomes
easier. Thus, as the locality of the jobs improves, the running time decreases which
further decreases the load, thus further decreasing the running time.
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The overall trend is that the processor locality improves through our approach.
The simulation results were sufficiently promising to justify implementing the allo-
cation algorithms on Cplant. The gains in system throughput (described in Section
4.5) are consistent with these simulation results.

4.5 Experiments

We have performed a limited number of experiments on Zermatt, a 128-processor
Cplant machine configured as a two dimensional mesh. This development machine
has an 8 × 8 mesh of switches with toroidal wraps in both dimensions. Four of the
rows have four processors per switch. The other rows contain no compute processors;
they contain service and I/O nodes, but fewer than four per switch on average. This
pilot study serves as a proof of the concept: careful one-dimensional ordering and
allocation to preserve locality within this ordering both improve system throughput.

All runs use identical job streams containing replicas of various-sized instances of
a single communication test suite. The communication test suite contains all-to-all
broadcast, all-pairs ping-pong (message sent in each direction), and ring communi-
cation. Each communication test is repeated a hundred times in each suite. The
suite computes a variety of statistics, whose computation consumes a small fraction
of the total running time. Because locality is most important for jobs with high com-
munication demand, this test suite represents a best-case scenario for the benefits of
allocation improvements.

Our test job stream had 91 jobs of size 2, 33 jobs of size 5, 31 jobs of size 25, and
33 jobs of size 30. This gives a small range of “large” (approximately 1/4 or 1/5 of
the machine) and small jobs. The stream starts with some large jobs to fill up the
machine. Small jobs are interspersed among the large ones to cause fragmentation.
The last job submitted is small, but it always finishes in front of the last large job.
The machine is busy through the release of the last job.

Running times on the Cplant system are nondeterministic. If we run the same
job stream twice with the same allocation algorithm, same job ordering, same release
times, starting from an empty machine, and having dedicated processors, the running
times are not the same. Cplant has inherent nondeterminism in the network. There
is variability in time to load executables, in message delivery times, and so on. If
the completion time of a single job changes, the options available for the allocation
of subsequent jobs also changes. This effect propagates so that later jobs can be
allocated significantly better or worse than in a previous run. We even see different job
execution orderings, when a job that is held up for insufficient free processors in one
run finds enough free processors in a different run. We found that this nondeterminism
did not significantly affect the makespan of the job stream,3 but the running times of
individual job types did vary by 4-16%.

3The makespan of a set of jobs is the time between the start of the first job and the completion

of the last job.
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We ran the job stream two to five times (an average of four) for each of the
following strategies: First Fit and Sum of Squares with the Hilbert curve, and Free
List and Best Fit with and without the curve.

Allocation Average Standard
Strategy Makespan Deviation
Free List (no curve) 5:46:31 0:10:10
Best Fit (no curve) 5:27:58 0:05:48
Free List (Hilbert) 4:58:52 0:07:37
Sum of Squares (Hilbert) 4:32:09 0:03:16
First Fit (Hilbert) 4:30:22 0:06:09
Best Fit (Hilbert) 4:25:23 0:03:00

Table 5: Effect of allocation policy on the makespan of the test stream

Table 5 shows the effect of the allocation algorithm on the makespan of the job
stream. For this particular job stream, it is better to use a space-filling curve than
the row-based ordering. It is also better to pack a job into a consecutive interval
if possible. However, the performance of the various bin-packing-based allocation
strategies were largely indistinguishable.

Figure 3 shows the waiting times of the 30 node jobs as a function of their order
in the job stream. The x-axis shows order of job release. The y-axis shows waiting
time. The baseline points use the default processor ordering. All other runs are for
the indicated algorithm with the Hilbert curve. Jobs of size 2, 5, and 25 are not
represented since these would all be near the line y = 0.

Recall the job stream is identical for all runs, so job order is identical across runs.
Wait time measures the amount of time a job sits in a queue waiting for a sufficient
number of free processors. This plot does not include the 2-node, 5-node, and 25-node
jobs. Their wait time was so insignificant compared to that of the 30-node jobs that
they all sit near the x axis. This figure shows that waiting time is yet another metric
that orders the methods the same way with substantial separation.

Figure 4 examines job completion time as a function of two job-fragmentation
metrics, one inherent to the topology of the job placement and one used by the
algorithms. A natural geometric fragmentation metric is the average of the number
of communication hops between processors allocated to a job. Figure 4(a) plots job
completion time as a function of this average for the 30-node jobs. Figure 4(b) is a
similar plot for span with the Hilbert curve. We do not include the 2-node, 5-node,
and 25-node jobs in these plots. The 2-node, 5-node, and 25-node jobs differ enough
from the 30-node jobs to add noise to the plots. When the 2-node, 5-node, and
25-node jobs are plotted by themselves, they show the same weak correlation on a
different scale and with a different slope. Figure 4(a) includes all processor orderings.
Figure 4(b) is for Hilbert curve only. These plots include all 30-node jobs placed with
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Figure 3: Individual job waiting times for different one-dimensional allocation heuris-
tics

all algorithms since the effect of fragmentation should be a function of the amount of
fragmentation and independent of how that placement decision was made.

We observe a weak correlation for both metrics. As expected, there is a stronger
correlation of completion time to the average number of communication hops because
this is a closer match to the topology of the job placement. We are encouraged that
the general span metric, which can be easily computed, still tracks this correlation,
albeit more weakly. We show the similar plot for bounding box perimeter that gives
an intermediate strength correlation in Figure 5. None of these metrics captures the
full environment in which a job is run.

4.6 Concluding Remarks on One-Dimensional Reduction

We are cautiously optimistic that the simple, general allocation methods discussed
in this section will improve the performance of Cplant systems and apply to more
general systems. Our experiments support the use of span as a fragmentation metric
for the design of algorithms and as a measure of locality. Jobs with large span do
generally take longer. However, the relationship between span and completion time
is not very tight. More work is needed to determine how much of this variability is
inherent in the problem and how much results from the imprecision of using span.
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Figure 4: Correlation of span and average pairwise distance with completion time.

We also think that finding the minimum span for a given machine and set of jobs
is an interesting theoretical problem. It is related to, yet distinct from, well-studied
problems such as memory allocation and bin packing. We have a simple reduction to
show that finding the exact minimum span is NP-hard, but do not yet know if it is
approximable.

Theorem 1 Given a set of jobs, it is NP-hard to determine offline if they can be
allocated with maximum span at most k.

Proof: Our proof closely follows the proof that dynamic memory allocation is NP-
hard by Stockmeyer [100]. We give a reduction from 3-PARTITION: Given a set of
positive integers A = {a1, a2, . . . , a3m} with

∑3m
i=1 ai = mB and B/4 < ai < B/2 for

all i, can A be partitioned into disjoint sets A1, A2, . . . , Am such that
∑

x∈Ai
x = B

for each Ai? This problem is known to be strongly NP-hard [45], meaning that it
remains NP-hard if the input size is taken to be the value of the numbers rather than
their length in binary.

The basic outline of our proof is to force the algorithm to place “divider” jobs
every B processors. Then, if a job arrives corresponding to each ai and requesting
ai processors, a contiguous allocation of these jobs corresponds to a solution to the
3-PARTITION instance.
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Rather than using large jobs, however, all jobs in our instance require 1 or 2
processors. The idea is to replace a job using k processors with 2k − 1 jobs. First k
jobs J1, J2, . . . , Jk requesting a single processor arrive. Then job J1 finishes and the
following happens for i = 2, 3, . . . , k:

• Job Ji finishes.

• A job J arrives requesting 2 processors.

• Job J finishes.

• A job J ′
i−1 arrives requesting 1 processor.

Finally, a job J ′
k arrives requesting 1 processor. The 2-processor jobs force adjacent-

numbered jobs to be allocated adjacently if the span is to be at most 2. Thus,
after these procedure the order the jobs are allocated in is either J ′

1J
′
2. . .J

′
k−2J

′
kJ

′
k−1,

J ′
1J

′
2. . .J

′
k or the reverse of one of these orders. We say that a set of jobs are allocated

roughly sequentially if they are in one of these orders.
Using this idea, it is easy to follow our proof outline on a machine with mB+m−1

processors. First, force the algorithm to allocate mB +m− 1 jobs sequentially. Then
cause all jobs to finish except those in positions B, 2B+1, 3B+2, . . . , (m−1)B+m−2.
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(Note that the same jobs are in each of these positions in each of the roughly sequential
orders.) Next, mB jobs arrive, each requesting a single processor. Finally, make sure
that ai of these are in roughly sequential order for each element ai ∈ A.

This instance can be allocated with maximum span 2 exactly when the elements
of A can be partitioned into groups of size B, i.e. exactly when the given instance of
3-PARTITION has a solution.

Since splitting a job of size 2 yields a span of at least 3, this proof shows that it
is NP-hard to give a 3/2 approximation to the maximum span. The same proof also
proves the following:

Theorem 2 Given a set of jobs, it is NP-hard to determine offline if they can be
allocated with sum of spans at most k.

We have also studied these problems in the online setting, where the standard
(worse-case) model is competitive analysis [99]. We have been able to show that no
online algorithm for minimizing maximum span can achieve a competitive ratio better
than Ω(n) even for randomized strategies.

Theorem 3 No online randomized algorithm for minimizing maximum span can
achieve a competitive ratio better than Ω(n).

Proof: By Yao’s Lemma [105], it is sufficient to show that no deterministic algorithm
can be better than Ω(n)-competitive on a given randomized input. Now we specify an
input of n jobs, which should be allocated on a machine of size (n + 1)/2 (we assume
that n is odd). Select distinct x1, x2 ∈ {1, 2, . . . , (n+1)/2} uniformly at random. Job
Ji is schedule at time 0 and finishes at time i for 1 ≤ i ≤ (n + 1)/2. Each of these
jobs also have a partner job. The partner for Ji with i 6= x1, x2 is scheduled at time
i and finishes at time n + 1. The partner for jobs Jx1

and Jx2
are scheduled at time

x1 and x2 respectively, and finish at time n. The instance’s final job is scheduled at
time n and finishes at time n + 1. The final job requires 2 processors and all other
jobs require 1 processor.

Any deterministic algorithm will put the first (n + 1)/2 jobs into a particular
permutation. The partner jobs are then forced into the corresponding permutation
since there is only one available processor when each is scheduled. The final job
must be allocated to the two processors used by the partners of Jx1

and Jx2
. Since

x1 and x2 were chosen randomly, the expected span of this job is Ω(n). Since the
optimal algorithm can allocate this job with a span of 2 by giving the initial jobs an
appropriate permutation, the competitive ratio is Ω(n).

Future work for one-dimensional reduction include non-greedy allocation methods
for jobs that cannot be allocated a contiguous interval. In particular, Sum-of-Squares-
like algorithms are more likely to leave flexibility in the allocation options for future
jobs. On some Cplant machines, once a job has span of half the machine size, it
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effectively consumes bandwidth across the entire machine. Our hope is that additional
flexibility would allow us to avoid such situations.

Section 5 shows how we have started to improve the allocation further by consider-
ing the actual processor topology rather than working entirely within a linear ordering
of the processors. When the processors are arranged as a mesh, this makes the allo-
cation problem a multidimensional packing problem, but other processor topologies
such as toruses do not have obvious analogs in the packing literature. See Section 5
for processor-allocation algorithms minimizing the average number of communication
hops between the processors assigned to a job on a grid architecture.

It may also be beneficial to consider scheduling and processor allocation together.
Currently the allocator is forced to allocate jobs passed from the scheduler even if
these jobs must be highly fragmented. Combining these modules might allow more
intelligent decisions to be made, but any replacement would need to provide other
functionality of the scheduler such as preventing starvation and allocating resources
fairly between users.

Our experiments were limited by the small size of our test machine and the spe-
cialized nature of the test jobs/stream. Fully rigorous testing will be very challenging
because even our limited test suite required 4.5 to 6 hours per run. In order to do
these runs, we must take a system away from other users. This is particularly chal-
lenging for the 1000+ node production systems. Therefore our future work will have
to rely on simulation to some extent. However, these simulations must convincingly
account for the effects of locality on job completion time.
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5 Minimizing the Average Number of Communi-

cation Hops

This section gives processor-allocation algorithms for minimizing the average number
of communication hops between the processors assigned to a job on a grid architecture.
Let N be the number of processors in the grid and let n be the number of free
processors. If a system allocates each parallel program greedily to minimize the
average number of communication hops, then the allocation problem can be expressed
as the following clustering problem:

Given a set P of n points in <d, find a subset of k points with minimum aver-
age pairwise L1 distance. This section gives exact and approximate algorithms for
minimizing this clustering metric. One of these algorithms has been implemented on
Cplant, a supercomputer at Sandia National Laboratories.

In this section we present the following results:

• We give a linear-time exact algorithm for our clustering problem in one dimen-
sion.

• We give an efficient 2-approximation algorithm for our clustering problem in
<d, for any constant d. We also present lower bounds for this algorithm.

• We give an efficient polynomial-time approximation scheme (PTAS) for the
clustering problem in <2.

These results are also reported in [12]. We have formulated the exact problem as a
quadratic program which can also be solve as either a semidefinite program [84] or
an integer linear program [21].

The remainder of the section is organized as follows. Subsection 5.1.1 gives a
linear-time exact algorithm for our clustering problem in one dimension. Subsection
5.2 gives a 2-approximation for general point sets. Subsection 5.1.2 gives fast algo-
rithms for small clusters in the plane. Subsections 5.3 and 5.4 give PTASs in the
plane. We conclude with Subsection 5.5.

5.1 Exact Algorithms for Special Cases

5.1.1 One-Dimensional Allocation

We use the following structural property of optimal solutions:

Theorem 4 In one-dimension, there always exists an optimal solution that is convex.

Sketch of Proof. Assume that the lemma is false. Remove a “hole” and note that this
decreases the sum of pairwise distances.
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We first consider the one-dimensional clustering problem, in which all the available
processors form a horizontal line. This one-dimensional problem is simpler than the
multi-dimensional problem because in one dimension there are only a linear number
of convex clusters, and by Theorem 4 there always exists an optimal convex cluster.
Thus, a näıve algorithm is to test each convex cluster and choose the cluster that
minimizes the average pairwise distance. This näıve algorithm trivially runs in O(nk2)
time. With an O(k) method for calculating pairwise distances within clusters, the
running time improves to O(nk).

In this section we present a linear-time dynamic-programming solution to the one
dimensional problem. To begin, we require some notation. Let pi be the position of
the i-th free processor in the linear ordering. Let δi+1 = dist(pi, pi+1) = |pi − pi+1| be
the distance between the i-th and i+1-st free processors. Let Pi be the i-th convex set
of processors, that is, Pi = {pi, pi+1, . . . , pi+k−1}. Let Di denote the pairwise distances
between the processors in set Pi. Thus, the optimal solution is

min
1≤i≤n−k+1

{Di}.

Rather than calculate Di “from scratch,” we calculate Di quickly from Di−1. To do
so, we maintain the following variables:

• The linear span as previously defined, i.e., distance between the leftmost and
rightmost processor in Di:

Si = dist(pi, pi+k−1) =
k−1
∑

j=1

δi+j.

• The distance from all processors in set Pi to the leftmost processor pi:

Li =
k−1
∑

j=1

(k − j)δi+j.

• The distance from all processors in set Pi to the rightmost processor pi+k−1:

Ri =
k−1
∑

j=1

jδi+j.

The algorithm is as follows:
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1. Initialize the three variables L1, R1, and D1 (in O(k) time).

2. Repeatedly update the variables (in O(1) time) as follows:

Li+1 =
k−1
∑

j=1

(k − j)δi+j+1 = Li − (k − 1)δi+1 + Si+1.

Ri+1 =
k−1
∑

j=1

jδi+j+1 = Ri − Si + (k − 1)δi+k.

Di+1 = Di − Li + Ri+1.

3. Return the minimum value of Di ever seen.

The one-dimensional problem can be solved in linear time because of this efficient
dynamic programming implementation:

Theorem 5 The clustering algorithm runs in time O(n + k) = O(n).

The algorithms easily adapts to run on a one dimensional torus (a ring). For this
generalization we make two copies of the points p1, p2, . . . , pn, so that our problem in-
stance contains points p1, p2, . . . , p2n, where dist(pn, pn+1) is the distance from pn to p1

along the wraparound, and for 1 ≤ i ≤ n− 1, dist(pi, pi+1) = dist(pn+i, pn+i+1). Then
we run the algorithm as described above. If the optimal solution uses wraparound,
then it will be found using some of the original processors and some of the copied
processors.

5.1.2 Fast Algorithms for Small Clusters

Lemma 1 Let P be a set of n points in the plane. The smallest subset of P of size
3 (in the L1 metric) can be found in O(n log n) time.

Proof: Let S = {s0, s1, s2} be a minimal weight subset of P . We label the x- and
y-coordinates of a point s ∈ S by some (xa, yb) with 0 ≤ a < 3 and 0 ≤ b < 3 such
that x0 ≤ x1 ≤ x2 and y0 ≤ y1 ≤ y2. The weight of S is equal to 2(x2−x0)+2(y2−y0).
Consider the smallest Steiner star of S. Its length is equal to (x2 − x0) + (y2 − y0).
We can use this fact to show that the smallest subset of size 3 is also the smallest
Steiner star of size 3. So S can be used to form a Steiner star of size 3 of minimal
weight. Let c be the center of the smallest Steiner star of S.

The three points in S are the three closest points to c. If not, there would have
been a smaller Steiner star. Therefore S corresponds to a cell on the order-3 Voronoi
diagram of P . Since this diagram can be found in O(n logn) time and has a linear
combinatorial complexity, the lemma follows.
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5.2 2-Approximation for General Point Sets

Given n points in <d, we want to find k points to minimize the average pairwise L1

distance. Define the median of a set of k points in <1 to be the “middle” point, or if
k is even, either of the two middle points. Define the median of a set of k points in
<2 to be a point in <2 having the median x-coordinate and the median y-coordinate
of the points in the set. The median of a set of k points in <d is defined analogously.
Thus, the median of the set need not belong to the set. If k is odd, then there is a
unique median, whereas if k is even, then there are 2d choices of median.

The algorithm is as follows:

Build the set of all possible medians by drawing a horizontal and vertical line
through every point, and consider all the O(n2) intersection points. For each
possible median do:

1. Take the k points closest to the possible median.

2. Compute the total pairwise distance between all k points.

Return the set of k points with smallest pairwise distance.

While the 2-approximation is reminiscent of the MC algorithm (Section 3 and
[75]), there are crucial differences. The MC algorithm builds balls only around free
processors rather than around all possible medians. The work of Krumke et al. [64]
implies that MC is a 4-approximation for average pairwise distance when shell 0 is
a 1 × 1 submesh (a reasonable choice when a desired shape is not given). Our 2-
approximation is also similar to that of Krumke et al, but they consider points in a
general metric space and only center the allocated processors on a free processor.

5.2.1 Analysis

For any point p and cluster of k points in <d, define the star from p to be the union of
the paths extending from p to the k points. The length of the star is the total length
of these paths.

Lemma 2 For any set of k points, the shortest star is centered at their median.

Proof: Consider what happens to the length of the star for a set of points when
we move the center to a median of the set of points. With out loss of generality, we
will consider only what happens in the x-dimension. Let d equal the distance in the
x-dimension we moved the center. At most half the points moved up to d further
from the center, and at least half the points moved d closer to the center.

The following corollary establishes a connection between the length of the star
centered at the median of k points and the pairwise distances between the points.
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Corollary 3 For any set of k points, the length of the star centered at the median
times k is a lower bound on the sum of the (double counted) pairwise distances between
the k points.

Proof: The sum of the (double counted) pairwise distances between the k points
exactly equals the sum of the lengths of the k stars centered at each of the k points.
The corollary follows directly.

Corollary 3 leads to a lower bound on OPT, where distances are double counted.

Lemma 4 The length of the shortest star times k is a lower bound on OPT.

Proof: Consider the optimal cluster, that is, the cluster that minimizes the sum of
the pairwise distances between the points. By Corollary 3, a lower bound on OPT is
k times the length of the star centered at the median. Therefore, a lower bound on
OPT is k times the length of the minimum star.

We now give an upper bound on the cost of the cluster found by our algorithm:

Theorem 6 The total pairwise distances, double counted, is at most (2− 2/k)OPT.

Proof: We overestimate distances by routing all paths through the median. These
detours can only make the distances larger. For example, two points in the same
quadrant have their distance increased by first going to the center and then going
back. Thus, every distance is routed along the shortest star (from the median of the
k chosen points).

How many times is each edge of the star covered? Each of the k chosen points
covers its adjacent edge of the star k − 1 times for all the connections to the other
points, plus it covers every other edge of the star (of which there are k − 1) once, for
a total of 2k− 2 per chosen point. Thus, the total pairwise distance, double counted,
is at most 2k − 2 times the length of the shortest star.

Therefore, we have a (2 − 2/k)-approximation.

5.2.2 Tightness

Now we give instances which lower bound the approximation ratio achieved by our
algorithm. Note that these lower bounds limit the performance of the algorithm and
are not lower bounds showing the hardness of the problem in general.

Returning the smallest star is a 2-approx First we consider a slight variant of
our algorithm. Rather than computing the sum of pairwise distances for the points
in each star, merely return the smallest star. By the reasoning above, this algorithm
is also a 2-approximation. To show that it is not better than a 2-approximation,
consider an input consisting of the following 4 sets of points:
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A is k − 1 points at (0, 0),
B is 1 point at (k, 0),
C is k/2 points at (−1 − ε, 222k), and
D is k/2 points at (1 + ε, 222k).

The star computed from (0, 0) includes the points in A and B and has length k.
This is smaller than (k/2)(2 + 2ε) = k(1 + ε), the length of the stars computed from
(0, 222k), (−1 − ε, 222k), or (1 + ε, 222k).

Thus, the algorithm selects A∪B. The sum of pairwise distances for these points
is (k − 1)k = k2 − k. The optimal set of points is C ∪D, which have sum of pairwise
distances (k/2)(k/2)(2 + 2ε) = (1/2)k2(1 + ε). For ε = 1/k2, the ratio between these
approaches 2 as k → ∞.

−
2A1A

− −
2A
+

B
+

B

C C
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−+
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+
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++

Figure 6: Lower bound for real algorithm

Lower bound for real algorithm Consider the following sets of points shown in
Figure 6:

A±
1 are k/8 points at (±1, 0),

A±
2 are 3k/8 points at (±(1 + ε), 0),

B± are k/8 points at (±(3 − ε), 0), and
C±± are k/8 points at (±1,±(2 − ε)).
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The optimal selection is all the A’s. The best center is at any of the A points or B
points, which yield 7k2/8, for an approximation ratio of 7/4.

Generalizing to 3d:

A±
1 are k/12 points at (±1, 0, 0),

A±
2 are 5k/12 points at (±(1 + ε), 0, 0),

B± are k/12 points at (±(3 − 2ε), 0, 0),
C±±

y are k/12 points at (±1,±(2 − ε), 0), and
C±±

z are k/12 points at (±1, 0,±(2 − 2ε)),

which gives ρ ≥ 11/6.
Generalizing to higher dimensions should be fairly straightforward because no

additional points are added (other than those that are rotations of C).

5.2.3 Efficient Implementation Ideas

The most time-consuming step of our algorithm is finding the k nearest free processors
from each free processor. In the plane, the fastest known solution is a data structure
by Eppstein and Erickson [36]. It requires O(n log n) preprocessing time to build and
then O(log n + k) time for each query, for a total of O(n log n + nk) to find all sets of
nearest neighbors. Their algorithm is specific to finding nearest neighbors under the
L1 metric; Dickerson et al. [35] give a slightly slower solution which works for other
metrics. In 3 dimensions, Vaidya [103] gives an algorithm that runs in O(kn log n).
This algorithm has the same asymptotic running time in any higher fixed dimension
d, but the O-notation hides a dd term. The running time of known solutions are
at least exponential in d, even when only looking for the single nearest neighbor.
This has motivated efforts to find approximate nearest neighbors. An overview of
exact algorithms and one approximation is given by Arya et al. [6]. Note that in
our application, d is typically 3 or less because the meshes must be laid out in 3-
dimensional space.

5.2.4 Other Algorithm Ideas

Picking median element This algorithm is simply to try each grid point p as a
potential median element; select the k nearest processors such that p is the median of
the selected processors. (To implement this, repeatedly take pairs of processors from
opposite quadrants.)

The current best lower bound for this algorithm comes from the following instance
shown in Figure 7:

A±
1 are k/4 points at (±1,±ε),

A±
2 are k/4 points at (∓ε,±1),

B± are k/4 points at (±(1 + 2ε), 0), and
C± are k/4 points at (±(3 − ε), 0).

39



−−

A
+
1

B 2C C
+

B

A

+
A

−
2A

1

+
2

2
+

Figure 7: Lower bound for algorithm that tries each grid point as a potential median

The optimal solution is A±
1 ∪ B±, which gives sum of pairwise distances k2/2.

The algorithm considers the following:

• all the A groups, which gives sum of pairwise distances 3k2/4, and

• A+
1 ∪A+

2 ∪C+ ∪B+ (could also get B− or center around the A− points), which
gives sum of pairwise distances 3k2/4.

In both cases, the ratio is 3/2. Note that if the algorithm also considers midpoints,
it can get set A+

1 ∪ A+
2 ∪ B+ ∪ B− for sum of pairwise distances 5k2/8 and ratio 5/4.

DCA B

Figure 8: One-dimensional lower bound for algorithm that also considers the mid-
points between grid points

Algorithm with Midpoints When the algorithm also considers the midpoints
between grid points, it finds the optimal solutions in the examples in Subsection 5.2.2.
However, it does not in the following example shown in Figure 8:
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A is k(1/4 − x/2) points at −1 + ε,
B is kx points at −ε,
C is k/2 points at 0, and
D is k/2 points at 1,

where x = (
√

(2) − 1)/2.

The optimal is B, C, and k(1/2 − x) points from D. Ignoring epsilons, this has
sum of pairwise distances k2x.

The algorithm will consider the following two sets of points:

• A, B, C, and k(1/4 − x/2) points from D, and

• C and D.

Both of these yield a sum of pairwise distances of k2/4, for a ratio of 1/(4x) =
(
√

2 + 1)/2 ≈ 1.207.

B C D

3

1

A

A

A2

Figure 9: Two-dimensional lower bound for algorithm that also considers the mid-
points between grid points

In 2D, the instance, shown in Figure 9,

A1 is k(1/8 − x/4) points at (−1 + ε, 0),
A2 is k(1/8 − x/4) points at (0, 1 − ε),
A3 is k(1/8 − x/4) points at (0,−1 + ε),
B is kx points at (−ε, 0),
C is k/2 points at (0, 0), and
D is k/2 points at (1, 0),

where x =
√

3 − 1.5, gives a ratio ρ = (3
√

3 + 5)/8 ≈ 1.275.

Generalizing to higher dimensions, x = (
√

2d(2d − 1) − 2d + 1)/2 and ρ → 4/3.
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Incremental improvement The algorithm runs in 2 steps for each possible center
p. First, find the k open processors nearest to p, as the current algorithm does.
Second, consider other nearby processors seeing of the star to the selected processors
is smaller than the star of one of the selected processors. If so, add the processor with
smaller star to the solution and remove the processor with larger star.

Although it seems like a good idea, this incremental improvement scheme does not
seem to improve the approximation ratio. Tweaking the example in Subsection 5.2.2
so that the B and C groups have 1 more processor and the A1 groups have 3 less
makes the algorithm select a local minimum solution so no changes will be made.
Perhaps considering moving a fraction of k processors could be made to work, but
it’s unclear how to do this efficiently.

5.3 PTAS for minimal weight subset, L1 metric

The basic idea is identical to the one used by Fekete and Meijer in an earlier paper
[40]. We find (by enumeration) a subdivision of an optimal solution into m × m
rectangular cells Cij, each of which must contain a specific number kij of selected
points. From each cell Cij, the points are selected in a way that guarantees that the
total distance to all other cells except for the m−1 cells in the same “horizontal” strip
or the m− 1 cells in the same “vertical” strip is minimized. As it turns out, this can
be done in a way that the total neglected distance within the strips is bounded by a
small fraction of the weight of an optimal solution, yielding the desired approximation
property. See Figure 10 for the setup.

For ease of presentation we assume that k is a multiple of m and m > 2. Ap-
proximation algorithms for other values of k can be constructed in a similar fashion.
Consider an optimal solution of k points, denoted by OPT. Furthermore consider
a division of the plane by a set of m + 1 x-coordinates ξ0 ≤ . . . ≤ ξ1 ≤ ξm. Let
Xi := {p = (x, y) | ξi ≤ x ≤ ξi+1, 0 ≤ i < m} be the vertical strip between coordi-
nates ξi and ξi+1. By enumeration of possible choices of ξ0, . . . , ξm we may assume
that the ξi have the property that, for an optimal solution, from each of the m strips
Xi precisely k/m points of P are chosen. (A small perturbation does not change
optimality or approximation properties of solutions. This shows that in case of sev-
eral points sharing the same coordinates, ties may be broken arbitrarily; in that case,
points on the boundary between two strips may be considered belonging to one or
the other of those strips, whatever is convenient to reach the appropriate number of
points in a strip.)

Let w(S, T ) be the sum of all the distances between points in S and points in
T . Let wx(S, T ) and wy(S, T ) be the sum of all the x- and y- distances between
points in S and points in T respectively. So w(S, T ) = wx(S, T ) + wy(S, T ). Let
w(S) = w(S, S), wx(S) = wx(S, S) and wy(S) = wy(S, S).

Let S = {s0, s1, . . . , sk−1} be a minimal weight subset of P , where k is an integer
greater than 1. We will label the x- and y-coordinates of a point s ∈ S by some
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(xa, yb) with 0 ≤ a < k and 0 ≤ b < k such that x0 ≤ x1 ≤ . . . ≤ xk−1 and
y0 ≤ y1 ≤ . . . ≤ yk−1. (Note that in general, a 6= b for a point s = (xa, yb).) We can
derive the following equation:

wx(S) = (k − 1)(xk−1 − x0) + (k − 3)(xk−2 − x1) + . . .

wy(S) = (k − 1)(yk−1 − y0) + (k − 3)(yk−2 − y1) + . . .

We show that there is a polynomial time approximation scheme (PTAS), i.e., for any
fixed positive ε, there is a polynomial approximation algorithm that finds a solution
that is within (1 + ε) of the optimum.

η2

η1

η0

ξ0 ξ1 ξ2 ξm

ηm

ηm−1

X0 X1 Xm−1

Ym−1

Y0

Y1

ξm−1

C11

C10

C01

C00

Figure 10: Dividing the point set in horizontal and vertical strips.

In a similar manner, suppose we know m + 1 y-coordinates η0 ≤ η1 ≤ . . . ≤ ηm

such that from each horizontal strip Yi := {p = (x, y) | ηi ≤ y ≤ ηi+1, 0 ≤ i < m} a
subset of k/m points are chosen for an optimal solution.

Let Cij := Xi ∩ Yj, and let kij be the number of points in OPT that are chosen
from Cij. Since

∑

0≤i<m

kij =
∑

0≤j<m

kij = k/m,

we may assume by enumeration over the O(km) possible partitions of k/m into m
pieces that we know all the numbers kij.
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η3
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Figure 11: Select points in cell C12.

Finally, define the vector ∇ij := ((2i + 1 − m)k/m, (2j + 1 − m)k/m). Now our
approximation algorithm is as follows: from each cell Cij, choose some kij points
that are minimal in direction ∇ij, i.e., select points p = (x, y) for which (x(2i + 1 −
m)k/m, y(2j + 1 − m)k/m) is minimal. For an illustration, see Figure 11.

It can be shown that if we select point in this way from each cell, we minimize the
sum of the x-distances from each point in Cij to points not in Xi and the y-distances
to points not in Yj.

(Overlap between the selections from different cells is avoided by proceeding in
lexicographic order of cells, and choosing the kij points among the candidates that
are still unselected.) Let HEU be the point set selected in this way.

It is clear that HEU can be computed in polynomial time. We will proceed by
a series of lemmas to determine how well w(HEU) approximates w(OPT). In the
following, we consider the distances involving points from a particular cell Cij. Let
HEUij be the set of kij points that are selected from Cij by the heuristic, and let
OPTij be a set of kij points of an optimal solution that are attributed to Cij. Let
HEUi•, OPTi•, HEU•j and OPT•j be the set of k/m points selected from Xi and Yj by
the heuristic and an optimal algorithm respectively. Finally HEUi• := HEU \HEUi•,
HEU•j := HEU \ HEU•j , OPTi• := OPT \ OPTi• and OPT•j := OPT \ OPT•j .

5.3.1 Outline

This whole proof is a bit heavy on notation. Maybe this little subsection will help.
Notice that

w(HEU) =
∑

i,j

[wx(HEUij,HEUi•) + wy(HEUij,HEU•j)] +
∑

i

wx(HEUi•) +

∑

j

wy(HEU•j).
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We first show that the first part is smaller that w(OPT). We then show that the
second and third part are small fractions of w(HEU).

5.3.2 Details

Lemma 5

wx(HEUij,HEUi•) + wy(HEUij,HEU•j) ≤ wx(OPTij,OPTi•) + wy(OPTij,OPT•j).

Proof: Consider a point p ∈ OPTij\HEUij. Thus, there is a point p′ ∈ HEUij\OPTij

that was chosen by the heuristic instead of p. Let p − p′ = h = (hx, hy). When
replacing p′ in HEU by p, we increase the x-distance to the ik/m points left of Cij by
hx, while decreasing the x-distance to (m − i − 1)k/m points right of Cij by hx. In
the balance, this yields a change of ((2i + 1 − m)k/m)hx. Similarly, we get a change
of ((2j + 1 − m)k/m)hy for the y-coordinates. Since p′ was chosen to minimize the
inner product 〈p′,∇ij〉 we know that the inner product 〈h,∇ij〉 ≥ 0, so the overall
change of distances is positive.

Performing these replacements for all points in HEU\OPT, we can transform HEU
to OPT, while increasing the sum of distances wx(HEUij,HEUi•)+wy(HEUij,HEU•j)
to the sum

wx(OPTij,OPTi•) + wy(OPTij,OPT•j).

Corollary 6

∑

i,j

wx(HEUij,HEUi•) + wy(HEUij,HEU•j) ≤ w(OPT).

In the following two lemmas we show that

∑

i

wx(HEUi•)

is a small fraction of w(HEU). Similar proofs can be given for

∑

j

wy(HEU•j).

Lemma 7

∑

0<i<m−1

wx(HEUi•) ≤ wx(HEU)

2(m − 2)
.
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Proof: Let δi = ξi+1 − ξi. Since i(m− i− 1) ≥ m− 2 for 0 < i < m− 1, we have for
0 < i < m − 1

wx(HEUi•) ≤
k2

2m2
δi ≤

ik

m

(m − i − 1)k

m
δi

1

2(m − 2)
.

Since HEU has ik/m and (m − i − 1)k/m points to the left of ξi and right of ξi+1

respectively, we have

wx(HEU) ≥
∑

0<i<m−1

ik

m

(m − i − 1)k

m
δi

so
∑

0<i<m−1

wx(HEUi•) ≤
1

2(m − 2)
wx(HEU).

Lemma 8 For i = 0 and i = m − 1 we have

wx(HEUi•) ≤ wx(HEU)

m − 1
.

Proof: Without loss of generality assume i = 0. Let x0, x1, · · · , x(k/m)−1 be the
x-coordinates of the points p0, p1, . . . , p(k/m)−1 in HEU0•. So

wx(HEU0•) =

(

k

m
− 1

)

(

x k
m
−1 − x0

)

+

(

k

m
− 3

)

(

x k
m
−2 − x1

)

+ . . .

≤
(

k

m
− 1

)

(ξ1 − x0) +

(

k

m
− 3

)

(ξ1 − x1) + . . .

≤ k

m
(ξ1 − x0) +

k

m
(ξ1 − x1) + . . .

≤ k

m
(ξ1 − x0) +

k

m
(ξ1 − x1) + . . . +

k

m

(

ξ1 − x k
m
−1

)

.

Since ξ1 − xj ≤ x − xj where 0 ≤ j < k/m and x is the x-coordinate of any point in
HEU0• and since there are (m − 1)k/m points in HEU0•, we have

ξ1 − xj <
m

(m − 1)k
wx(pj,HEU0•)

so

wx(HEU0•) ≤ k

m

m

(m − 1)k

∑

0≤i< k
m

wx(pi,HEU0•)
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≤ 1

m − 1

∑

0≤i< k
m

wx(pi,HEU0•)

=
1

m − 1
wx(HEU0•,HEU0•)

≤ 1

m − 1
wx(HEU).

5.3.3 Result

We can combine these three lemmas to get the result we need.

w(HEU) =
∑

i,j

wx(HEUij,HEUi•) + wy(HEUij,HEU•j) +
∑

i

wx(HEUi•) +

∑

j

wy(HEU•j)

≤ w(OPT ) +
1

2(m − 2)
(wx(HEU) + wy(HEU)) +

2

m − 1
(wx(HEU) +

wy(HEU))

= w(OPT ) +
1

2(m − 2)
w(HEU) +

2

m − 1
w(HEU).

So

w(HEU)(1 − 1

2(m − 2)
− 2

m − 1
) ≤ w(OPT ).

5.4 Alternate PTAS

Now we present another PTAS based on different ideas. Intuitively, this second PTAS
tries to guess the median point of the optimal solution and the optimal solution’s
”shape”. To limit the search space, we show that ”far away” points can only be
included in the optimal solution if all ”nearby” points are also part of the optimal
solution.

Assume no two points are on the same row or column by breaking ties. Guess a
median (n2 possible), up to four extremal points (at most n4 possible 4-tuples), and
four ε1k boundary lines or core lines, which are lines with ε1k points of the solution
to the left, to the right, above, or below (at most n3 possible 4-tuples); see Figure 12.

Based on the extremal points, we know the bounding box for the solution. No
points outside of the bounding box can be in the solution. If the bounding box has
fewer than k points, then the extremal points are invalid and we guess another set
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core lines

median

+x-extreme

+y-extreme

core lines

-y-extreme

-x-extreme

Figure 12: Guesses for median, up to four extremal points, and four core lines

of extremal points. We next compute the forced region of the solution. This region
is defined by the extremal points, the median, and the four ε1k boundary lines; note
that the forced region may extend beyond the bounding box. All points within the
forced region must belong to the solution. If the forced region contains more than
k points or contains any points outside of the bounding box, then the above guesses
are invalid and we guess again.

The region between the bounding box and the forced region is called the uncertain
region. The uncertain region contains points that may or may not be in the solution.
Let the forced region contain some number k − x of points for 0 ≤ x ≤ k − 2, which
we know are in the solution. We have to choose the remaining x points from the
uncertain region.

In order to choose these remaining x points, we divide the uncertain region into
1/poly(ε) cells, such that the cell structure has the following crucial property: Con-
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sider the family of solutions that selects ni points from cell i; thus,

∑

i

ni = x.

All solutions in this family have cost within a factor of 1 + ε of each other.
The PTAS is as follows:

PTAS: Iterate over all possible choices of median, extremal points, and ε1k bound-
ary lines

1. Compute the bounding box and the forced region, and determine the number
of points in each region.

2. If there are too few points in the bounding box or too many points in the forced
region, then begin next iteration.

3. Otherwise, let k − x be the number of points in the forced region, where 0 ≤
x ≤ k − 2, meaning that we choose x points from the uncertain region.

4. Divide the uncertain region into cells 1, 2, 3, . . . , C = 1/poly(ε). Iterate over all
families of solutions, i.e., choices of n1, n2, n3, . . . , nC , such that

∑

i

ni = x.

5. For each n1, n2, n3, . . . , nC , calculate the cost of a sample solution.

Return the best solution.
We show that this algorithm has the following performance:

Theorem 7 The running time for the PTAS to compute a solution of cost O((1 +
ε)opt) is O(n9kC), where C = 1/poly(ε).

Recall that the additive contribution to the objective function from a given point
is the star centered at that point. Therefore, to prove the (1 + ε) bound on our
algorithm, it suffices to create cells such that the following property holds for all cells.

Definition 9 (cell property) Consider any two points p and p′ in a cell i, and a
candidate set of k − 1 other points. Let Sp and Sp′ be the length of the stars centered
at p and p′, respectively, where Sp < Sp′. Then Sp′ − Sp < εSp.
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5.4.1 Dividing the Uncertain Region into Cells

We now show how to divide the uncertain region into cells and prove that these
cells obey the cell property. We divide the uncertain region into two parts based on
proximity to the median. In each region we use a distinct method of partitioning the
region and proving the cell property. The first region we call the core, a rectangle
defined by the four ε1k boundary lines. The second region we call the mantle, the
remainder of the bounding box.

We will use the following structural property of a two-dimensional set of points.

Observation 10 Consider a set of k points in <2 and place the coordinate system
so that the median is at the origin. Let ki be the number of points in quadrant i,
i = 1, . . . , 4. Then, k1 = k3, and k2 = k4. For any pair of points lying in diagonally
opposite quadrants (quadrants 1 and 3, or 2 and 4), there exists a shortest L1 path
between these two points that passes through the median/origin.

The first observation follows from the definition of the median: There are a total
of k/2 points in every two adjacent quadrants.

Dividing the Core into Cells We now prove that the dimensions of the core are
small relative to average inter-point distance optave = opt/k2.

Lemma 11 At most η ≤ 2k
√

optave/δ points are at least distance δ from the me-
dian.

Proof: Among the η most distant points, let ηi denote the number of points in
quadrant i. Observation 10 guarantees that for each distant point there is a matching
point in the diagonally opposite quadrant, where the shortest paths travel through
the median. Note that this matching point may or may not be a distant point, but
it does not matter to the analysis. Therefore a lower bound on opt is

4
∑

i=1

η2
i δ ≤ opt = k2

optave.

This sum only accounts for the distances between the distant points to the median.
Because

∑4
i=1 η2

i is minimized when η1 = η2 = η3 = η4 = η/4,

η2δ/4 ≤ k2
optave.

Therefore,

η ≤ 2k
√

optave/δ.

Corollary 12 There are at most kε1 points at distance 4optave/ε2
1 from the median.
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Proof: Let δ = 4optave/ε2
1 and the corollary follows from Lemma 11.

Corollary 13 The core has dimension at most 8optave/ε2
1 × 8optave/ε2

1.

Proof: There are exactly kε1 points to the right, left, above, and below the core.
Therefore, by Corollary 12, the distance from the median to each of these lines can
be most 4optave/ε2

1.
We divide the core into equal-sized cells that are rectangles having dimension at

most εoptave/2 × εoptave/2. Thus, we divide the core into a grid of 16ε−1ε−2
1 ×

16ε−1ε−2
1 cells for a total of 256ε−2ε−4

1 equal-sized cells.

Lemma 14 The cells in the core obey the cell property.

Proof: The maximum distance between any two points in a cell in the core is
εoptave. Therefore the difference between the stars of any two points in the same
cell is at most (k − 1)εoptave.

Dividing the Uncertain Region in the Mantle into Cells Let D be the max-
imum vertical or horizontal distance from the median to any of the extremal points,
and let R be the maximum distance from the median to a kε1 line. If D = O(R)
then we divide the entire bounding box into cells in the same manner that we divide
the core, and by similar reasoning all cells obey the cell property. The difficult case
is when D = Ω(R), and we address this case in the rest of this subsection.

We divide the mantle into O(D2/poly(ε)) equal-size cells with dimensions at most
cεD× cεD, where constant 0 < c < 1 is determined below. Unlike in the core, not all
of these cells obey the cell property. However, we prove that any cell that does not
obey the cell property lies within the forced region, and therefore all points in this
cell must belong to the k points in the candidate solution.

We next prove that any cell that is sufficiently far away from the median has the
cell property.

Lemma 15 For any 0 < α < 1 there exists a c such that the following holds: Any
cell at distance at least αD from the median having size at most cεD × cεD obeys the
cell property.

Proof: Because the cell is at distance at least αD from the median, the cell is at
distance at least αD/2 from at least k/2 of the points. Therefore the cost of the
star of a point in the cell is at least kαD/4. In order to guarantee the cell property,
we want the difference between the stars of any two points in the cell to be at most
εkαD/4. Therefore we set c = α/8 so that the cell has dimension εαD/8 × εαD/8.
Therefore, any two points in the cell are at distance at most εαD/4 from each other,
and therefore the difference between their two stars is that most εαD(k − 1)/4.

We now exhibit an α such that all points that are at distance at most αD from
the median are in the forced region. To do so we describe the structure of the forced
region in more detail.
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Lemma 16 Consider any extremal point p. Any point q that lies on a shortest path
from p to the median must be in the candidate solution.

Proof: Assume for the sake of contradiction that there exists a point q that lies
on a shortest path from p to the median, where q is not in the candidate solution.
Consider moving a point along the shortest path from p to q of length dist(p, q). As
it makes each step along this path, the point approaches at least k/2+1 other points
(the points on the other side of the median and q) and moves away from at most
k/2− 1 points. Therefore the cost of p’s star is greater than the cost of q’s star by at
least 2dist(p, q).

A consequence of Lemma 16 is that any optimal solution must be convex. Unfor-
tunately, this requirement is insufficient to guarantee that points near the core are in
the forced region.
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Figure 13: The twelve regions of the mantle

Instead, we use a more precise description of the forced region. Let p be a point
in the forced region of the mantle. The four core lines and the quadrants defined by
the median partition the mantle into twelve regions; see Figure 13. While p can lie
in any of these regions, by symmetry we only have to consider two regions:

52



• Region A — the region to the left of both vertical core lines, above the median,
and below the top core line, and

• Region B — the region to the left of both vertical core lines and above both
horizontal core lines.

We use the following operational definition of the forced region: A point p is in
the forced region if we can prove (from the location of the core and median) that the
star at point p is smaller than the star of (at least) one of the extremal points. The
proof that p is in the forced region will be by contradiction. Suppose that the optimal
solution does not contain open point p in the forced region. We could remove the
extremal point from the candidate solution and replace it with p, thus obtaining a
better solution.

Lemma 17 Let point p in region A be in the forced region. Consider the line L1 with
slope 1 and the vertical line L2 that both pass through p. The subregion of A to the
right of both L1 and L2 forms part of the forced region.

Proof: Call the subregion of A to the right of both L1 and L2 Aforce. Any point
in Aforce below p (and thus to the right of L2) is on a shortest path from p to the
median. Therefore from Lemma 16 the subregion of Aforce below p forms part of the
forced region.

Consider any point q in Aforce that is above p (and thus to the right of L1).
Suppose that a shortest path from p to q travels a distance x to the right and a
distance y up. Because q is to the right of L1, x ≥ y.

Consider moving a point from p to q along this shortest path. When this point
moves to the right a distance x, it approaches at least (1 − ε1)k points and moves
away from at most ε1k points because p and q are both to the left of both vertical
core lines. Therefore the cost of the point’s star decreases by at least x(1−2ε1). Next
the point moves up a distance y. The point approaches at least ε1k points and moves
away from at most (1 − ε1)k points because p and q are between the horizontal core
lines. Therefore the cost of the point’s star increases by at most y(1− 2ε1)k. Because
y ≤ x, the cost of the star decreases; because point p is in the forced region, so is
point q.

Lemma 18 Let point p in region B be in the forced region. Consider the line L1 with
slope 1− 2ε1 and the vertical line L2, where L1 and L2 pass through p. The subregion
of B to the right of both L1 and L2 forms part of the forced region.

Proof: Call the subregion of B to the right of both L1 and L2 Bforce. Any point
in Bforce below p (and thus to the right of L2) is on is a shortest path from p to the
median. Therefore from Lemma 16 the subregion of Bforce below p forms part of the
forced region.
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Consider any point q in Bforce that is above p (and thus to the right of L1).
Suppose that a shortest path from p to q travels a distance x to the right and a
distance y up. Because q is to the right of L1, y ≤ (1 − 2ε1)x.

Consider moving a point from p to q along this shortest path. When this point
moves to the right a distance x, it approaches at least (1−ε1)k points and moves away
from at most ε1k points because p and q are both to the left of the vertical core lines.
Therefore the cost of the point’s star decreases by at least x(1− 2ε1). Next the point
moves up a distance y. The point may move away from all k points because p and q
are above both horizontal core lines. Therefore the cost of the point’s star increases
by at most ky. Overall, the change in the cost of the star is ky − x(1 − 2ε1) < 0 so
the cost of the star decreases. Because point p is in the forced region, so is point q.

Lemmas 17 and 18 explain why the forced region may extend beyond the bounding
box. In this case the forced region outside of the bounding box must be empty for us
to have a valid candidate solution.

We now compute the parameter α from earlier in the section.

Lemma 19 Let R be the radius of the core. Then any point at distance D−4Dε1−2R
is in the forced region. Therefore, α = 1 − 4ε1 − 2R/D.

Proof: We calculate a rough approximation of the bounding box to show that any
cells that are in the uncertain region are far from the median. We start from an
extremal point p that has the farthest x or y distance from the median. Without loss
of generality, assume that p lies on the left vertical boundary of the bounding box
and that the x-distance between p and the median is D.

Let point p1 lie at the intersection point of the bounding box in the negative x-
axis. From Lemma 17 we know that p1 is in the forced region. Now consider line
L1 that passes through point p1 and has slope 1 − 2ε. Follow L1 until it intersects
with the leftmost (vertical) core line, and call the intersection point p2. Then con-
sider horizontal line L2 that passes through p2, and follow L2 until it intersects with
the positive y-axis and call the intersection point p3. Consider line L3 with slope
−1/(1−2ε) that passes through p3, and follow L3 until it intersects with the topmost
(horizontal) core line. Call the intersection point p4, and follow L4 down until it
intersects with the positive x-axis. Call this intersection point p5. All points defined
by the upper envelope of lines L1, . . . , L4 connecting points p1, . . . , p5 and the lower
envelope of the x-axis connecting points p1 to p5 belong to the forced region. The
same analysis is used to estimate the forced region below the x-axis.

We now compute a lower bound on the minimum distance from the median to
a boundary of the forced region. As we travel from p1 to p5 along L1, . . . , L4 we
get increasingly closer to the median. Using simple algebra, since p1 is that distance
exactly D from the median, p2 is a distance at least (1−2ε)D from the median, p3 is a
distance at least (1−2ε)D−R from the median, p4 is a distance at least (1−4ε)D−R
from the median, and p5 is a distance at least (1 − 4ε)D − 2R from the median; see
Figure 14.
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Figure 14: Lines L1, . . . , L4 and points p1, . . . , p5

5.5 Conclusion About Minimizing Sum of Pairwise Distances

For minimizing sum of pairwise distances, we have exact algorithms for special cases,
several constant approximations, and two PTASes. We do not really know which
PTAS would be more useful in practice, but both would involve substantial coding
and potentially involve spending too much time on allocation decisions. Because the 2-
approximation from Subsection 5.2 balances solution quality and simplicity, we believe
this is the correct processor-allocation algorithm to implement in supercomputers.
Indeed, it is slated for inclusion in Cplant System Software, Version 2.1, to be released.
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6 Continuous version of problem

In this section, we solve the continuum version of the allocation problem in Section 5.
We treat the grid of processors as having a continuous two-dimensional planar dis-
tribution. For simplicity we call such a distribution a city . Our objective is to find
the shape of a city that minimizes the average pairwise Manhattan distance between
all points in that city. Fekete et al. [41, 42] consider the city-center problem under
Manhattan distances: For a given city, find a point that minimizes the average dis-
tance. The techniques that we use to solve this problem are those that are commonly
used in the solution of continuum mechanics and classical and quantum field theory
problems; namely, variational methods [76, 78]. These results are also reported in
[10].

6.1 Results

In this section we present the following results:

• We optimize a one-parameter family of boundary curves for a city. Specifically,
we consider cities in the shape of an Lp ball around the origin, and we find
the value of p that minimizes the average unitless Manhattan distance. It is
easy to show that the diamond (L1 ball) is a better shape for a city than a
square (L∞ ball). Furthermore, a circle (L2 ball) is a better shape for a city
that a diamond; apparently, the optimal city shape is rounded, even though
the Manhattan distance is composed of vertical and horizontal measurements.
In fact, the circle is not the optimal city shape. Using both analytical and
numerical methods, we show that the average unitless Manhattan distance for
this one-parameter family of boundary curves is obtained when d ≈ 1.81546;
see Table 6.4.4 and Figure 16. We also explore how rapidly the average unitless
distance between points increases when p < 1, the domain in which the city is
nonconvex. The contrast between the Manhattan distance and the Euclidean
distance is noteworthy; for Euclidean distance it is easy to see that the L2 ball
minimizes the average L2 distance.

• For the main result of the section, we determine the shape of the optimal city’s
boundary curve. We use variational methods [76, 78] to calculate a nonlinear dif-
ferential equation satisfied by the boundary curve; see Figures 17 and 18. Then
we give a numerical procedure for solving differential equation. The true mini-
mum average unitless distance, as obtained in Section 6.5, is 0.650 245 952 951.
It is remarkable that the one-parameter family of curves gives an extremely
close approximation that differs by only 2.6 × 10−4% from the minimum unit-
less distance.
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6.2 Overview

In Subsection 6.3 we formulate this optimization problem in mathematical terms.
Then, in Subsection 6.4 we consider a one-parameter family of cities and find the
shape of the optimal city in this limited family. From this calculation we can see that
the optimal city is not circular. Next, in Subsection 6.5 we carry out a full variational
calculation and determine an interesting nonlinear differential equation satisfied by
the boundary of the optimal city. The optimal city is nearly circular in shape but is
not a disk.

Finally, in Subsection 6.6 we offer some concluding observations and suggest some
further avenues for investigation. Our principal conclusions are that so long as the
allocation of processors are clustered in a tight shape having no holes or only small
holes, the allocation will be extremely close to optimal.

6.3 Formulation of the Problem

Let w(x) be the upper boundary of the region occupied by the city. Without loss of
generality we may assume that w(x) is positive. Because the Manhattan distance is
north-south symmetric we may assume that the lower bound of the region is −w(x).
Also, because the Manhattan distance is east-west symmetric we may assume that
w(x) = w(−x). The boundary of the city must be continuous, so we assume that
w(x) crosses the x-axis at the point x = a: w(a) = w(−a) = 0.

Furthermore, because the north-south and east-west directions are of equal weight
we expect the shape of the city to be symmetric about the 45◦ lines y = x and y = −x.
This means that we may decompose the function w(x) into two functions, w(x) = g(x)
below the line y = x and w(x) = h(x) above the line y = x:

w(x) =

{

h(x) (0 ≤ x ≤ b),
g(x) (b ≤ x ≤ a),

(1)

where b marks the point on the x-axis where the boundary curve w(x) crosses the
line y = x. The symmetry about the line y = x implies that h(x) is the functional
inverse of g(x): h(x) = g−1(x).

Finally, we define the length scale of this problem by choosing, without loss of
generality, to work in units such that b = 1. We summarize the properties of the
functions w(x), h(x), and g(x) as follows:

w(0) = h(0) = a,

w(1) = h(1) = g(1) = 1,

h(x) = g−1(x) (0 ≤ x ≤ 1),

w(x) ≥ 0 (−a ≤ x ≤ a). (2)

The functions g(x) and h(x) are illustrated in Figure 15. The curve that outlines the
city is symmetric with respect to reflections about the x axis y = 0, the y axis x = 0,
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Figure 15: Definition of the notation used in Section 6.

and the 45◦ lines y = ±x. In the upper-half plane this outline curve is called w(x).
Note that w(x) crosses the y and x axes at the points (0, a) and (±a, 0). The slope
of w(x) is 0 at x = 0 and infinite at x = a. Also, w(x) crosses the line y = x at the
point (1, 1), and at this point the slope is −1. The portion of the function w(x) in
the range 0 ≤ x ≤ 1 is called h(x) and the portion of w(x) in the range 1 ≤ x ≤ a is
called g(x). The functions h(x) and g(x) are inverses of one another because w(x) is
symmetric about the line y = x.

Let the functional A[w] represent the area of the city whose boundary curve is
shown in Figure 15. Note that A[w] is four times the area in the positive quadrant:

A[w] = 4
∫ a

x=0
dx w(x) . (3)

Let the functional M [w] represent the integrated sum of the distances between all
pairs of points in the city. Then,

M [w] = 2
∫ a

x=−a
dx
∫ w(x)

y=−w(x)
dy
∫ a

u=−a
du
∫ w(u)

v=−w(u)
dv |x − u| . (4)

The factor of two in this equation arises because we have summed only over east-west
distances. North-south distances make an equal contribution.
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Our objective is to describe the shape of a region of given area for which the
average pairwise distance between points in the region is minimized. That is, our
objective is to find the function w(x) that minimizes the functional M [w] subject to
the constraint that the area A[w] is held fixed. Note that M [w] has units of [length]5

and that A[w] has units of [length]2. Thus, a dimensionless measure of the average
pairwise distance is given by the ratio D[w]:

D[w] =
M [w]

(A[w])5/2
. (5)

To prepare for the calculations to be done in the next two subsections we simplify
the functional M [w]. First, we perform the y and v integrals in (4):

M [w] = 8
∫ a

x=−a
dx
∫ a

u=−a
du |x − u|w(x)w(u) .

Then, we decompose the integration region to eliminate the absolute value signs:

M [w] = 16
∫ a

x=0
dx
∫ a

u=0
du (x + u)w(x)w(u) + 16

∫ a

x=0
dx
∫ x

u=0
du (x − u)w(x)w(u)

+16
∫ a

x=0
dx
∫ a

u=x
du (u − x)w(x)w(u) .

Finally, we split apart the terms, change variable names, and merge integrands so
that all limits are the same. Our final result is

M [w] = 64
∫ a

x=0
dx xw(x)

∫ x

u=0
du w(u) . (6)

6.4 Special Cases and Optimization of a One-Parameter Fam-

ily of Boundary Curves

Let us begin by illustrating the calculation of the dimensionless functional D[w] in
(5) in terms of A[w] in (3) and M [w] in (6) for some elementary shapes.

6.4.1 Square

Consider a square city defined by the function w(x) = 1 (−1 ≤ x ≤ 1). For this
geometry a = 1, h(x) = 1 and g(x) is a vertical line connecting the points (1, 1) to
(1, 0). The area of this square is A = 4. We calculate M in (6) as follows:

M = 64
∫ 1

x=0
dx xw(x)

∫ x

u=0
du w(u) = 64

∫ 1

x=0
dx x

∫ x

u=0
du =

64

3
. (7)

Thus,

D =
M

A5/2
=

2

3
≈ 0.666 667 . (8)
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6.4.2 Diamond

Next, consider a diamond-shaped city for which w(x) = 2 − |x| (−2 ≤ x ≤ 2). For
this case a = 2, the area of the city is A = 8, and

M = 64
∫ 2

x=0
dx xw(x)

∫ x

u=0
du w(u) = 64

∫ 2

x=0
dx x(2−x)

∫ x

u=0
du (2−u) =

1792

15
. (9)

Thus, for a diamond-shaped city

D =
M

A5/2
=

7

15

√
2 ≈ 0.659 966 . (10)

6.4.3 Disk

Now let us consider a circular city, whose boundary is given by w(x) =
√

2 − x2 with
−
√

2 ≤ x ≤
√

2. Here, a =
√

2, the area of the city is A = 2π, and

M = 64
∫

√
2

x=0
dx xw(x)

∫ x

u=0
du w(u) = 64

∫

√
2

x=0
dx x(2−x2)

∫ x

u=0
du (2−u2) =

2048

45

√
2 .

Thus, for a circular city

D =
M

A5/2
=

512

45π5/2
≈ 0.650 403 . (11)

6.4.4 The Family of Curves w(x) = (2 − |x|p)1/p

Evidently, a disk is a better shape for a city than a square or a diamond. Apparently,
the optimal city shape is rounded even though the Manhattan distance is composed
of vertical and horizontal measurements. On the basis of these calculations one might
wonder if a disk is indeed the optimal shape for a city. In fact, a disk is not optimal,
as we now show. Consider a one-parameter family of boundary functions of the
form w(x) = (2 − |x|p)1/p (−21/p ≤ x ≤ 21/p). For this family of functions we have
a = 21/p. Note that this family includes a square (p = ∞), a diamond (p = 1), and a
disk (p = 2) as special cases.

It is noteworthy that the function D(p) is quite insensitive to the value of p: The
values of D for three such different city shapes, a square, a diamond, and a disk, differ
by only 3%. We now show that a disk is not the optimal shape for a city by studying
how the value of D depends on p. The area of the city, as a function of p, is given by

A(p) = 4
∫ a

x=0
dx (ap − |x|p)1/p =

2a2

p

Γ2(1/p)

Γ(2/p)
, (12)

where the Gamma function is defined by Γ(α) ≡ ∫∞
x=0 dx e−xxα−1 and we have used

the standard integration formula [48, 38]

∫ 1

x=0
dx xα−1(1 − x)β−1 =

Γ(a)Γ(b)

Γ(a + b)
. (13)
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The expression for M(p) cannot be evaluated in closed form and may be left as a
double integral:

M(p) = 64a5
∫ 1

x=0
dx x(1 − xp)1/p

∫ x

u=0
du (1 − up)1/p . (14)

For numerical purposes we convert this expression for M(p) to an infinite sum.
We do so by expanding the expression (1 − up)1/p into a binomial series and using
(13) to perform the double integration:

M(p) = 16
Γ(1 + 1/p)

pΓ(−1/p)

∞
∑

n=0

Γ(n − 1/p)Γ(n + 3/p)

n!(1 + np)Γ(n + 1 + 4/p)
. (15)

This series converges like n−3−2/p for large n and is therefore useful for obtaining
numerical results.

Boundary shape p D(p)

Concave boundaries:

plus sign 0 ∞
1/64 16, 134.274
1/32 82.153 831
1/16 6.122 774
1/8 1.719 920
1/4 0.940 692
1/2 0.723 183

astroid 2/3 0.686 397

Convex boundaries:

diamond 1 0.659 966
1.81 0.650 247 797
1.812 0.650 247 700
1.814 0.650 247 646

optimal 1.815 46 0.650 247 634
1.816 0.650 247 636
1.818 0.650 247 670
1.82 0.650 247 746

disk 2 0.650 403
square ∞ 0.666 667

Table 6: Numerical values for D(p) = M(p)A−5/2(p) for the one-parameter family of
boundary curves w(x) = (ap − xp)1/p with ap = 2.
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Figure 16: Plot of D(p) = M(p)A−5/2(p) for the class of boundary curves w(x) =
(ap − xp)1/p with ap = 2 in the range 1.7 ≤ p ≤ 1.9.

We have evaluated D(p) = M(p)A−5/2(p) numerically for many values of p in the
range 0 ≤ p < ∞. (See Table 6.4.4 and Figure 16.) The function D(p) is infinite at
p = 0, falls to a minimum just below p = 2, and then rises and levels off at p = ∞.
The optimal city, that is, the city for which D(p) is minimized, is nearly circular, but
is definitely not a disk (p = 2).

We expect the shape of an optimal city to be convex. The function w(x) =
(ap − xp)1/p is convex when p ≥ 1 and concave when p < 1. Thus, we expect the
optimal value of p for this class of functions to be in the range p > 1. Indeed,
by interpolating the values in Table 6.4.4 we find that D(p) attains its minimum
of 0.650 247 634 near p = 1.81546. It is remarkable that this one-parameter family
of curves gives an extremely close approximation that differs by only 2.6 × 10−4%
from the true minimum of the functional D[w]. The true minimum, as obtained in
Subsection 6.5, is 0.650 245 952 951.

Nevertheless, it is interesting to study the function D(p) for values of p less than
1 to see what happens when the city is not convex. For example, when p = 2

3
, the

boundary curve w(x) becomes an astroid .4 It is remarkable that even for this concave
city shape the value of D(2/3) ≈ 0.686 397 does not differ much from the value of
D(2) ≈ 0.650 403 for a circular city.

4An astroid is the path of the center of mass of a ladder as it slides down a wall with one end of

the ladder in contact with the wall and the other in contact with the floor.
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The growth of the function D(p) for small p can be obtained by using Laplace’s
method to evaluate the double integral for M(p) in (14) in the limit of small p. The
asymptotic behavior of M(p) is given by

M(p) ∼ 64π

p
√

3
27−1/p (p → 0+).

Using the Stirling formula to approximate the Gamma functions in A(p) in (12) we
obtain

D(p) ∼ 2p1/4

π1/4
√

3

(

32

27

)1/p

(p → 0+) . (16)

This asymptotic approximation is extremely accurate. At p = 1
32

the numerical value
of D(p) is 82.153 831, while this asymptotic formula predicts the value 83.763 and at
p = 1

64
the numerical value of D(p) is 16, 134.274 096, while this asymptotic formula

predicts the value 16, 179. The relative error in the latter prediction is about 0.3%.

6.5 Variational Determination of the Boundary Curve

We now use variational methods to determine a differential equation satisfied by the
boundary curve. We begin by simplifying the functionals A[w] and M [w].

6.5.1 Exploiting the Symmetry Across y = x

To prepare for our variational calculation we decompose w(x) into its separate compo-
nents g(x) and h(x). Then, using symmetry arguments, we eliminate all dependence
on g(x). Our optimization procedure will then determine the value of a. To begin we
note that the area A[w] in (3) is eight times the area in the positive octant above the
line y = x:

A[h] = 8
∫ 1

x=0
dx [h(x) − x] = 8

∫ 1

x=0
dx h(x) − 4 . (17)

Next we turn to the quantity M [w] in (6) and decompose w(x) into h(x) and g(x):

M [g, h] = 64
∫ 1

x=0
dx xh(x)

∫ x

u=0
du h(u)

+64
∫ a

x=1
dx xg(x)

[
∫ 1

u=0
du h(u) +

∫ x

u=1
du g(u)

]

. (18)

Note that from (17) we can evaluate one of the integrals in terms of A[h]:

∫ 1

u=0
du h(u) =

A

8
+

1

2
.
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Thus, M [g, h] is

M [g, h] = 64
∫ 1

x=0
dx xh(x)

∫ x

u=0
du h(u) + (8A[h] + 32)

∫ a

x=1
dx xg(x)

+64
∫ a

x=1
dx xg(x)

∫ x

u=1
du g(u) .

To replace g(x) by h(x), we exploit the inverse relationship between the two
functions: h(x) = g−1(x). Thus, if g(x) = γ and x : 1 → a, we have γ : 1 → 0.
Hence, we can write

x = g−1(γ) = h(γ) ,

and

dx = h′(γ) dγ =
1

g′(γ)
dγ .

Similarly, we let g(u) = α, for α : 1 → 0 (and u : 1 → a), implying that
u = g−1(α) = h(α). Therefore, du = h′(α) dα = 1

g′(α)
dα. We then change the

integration variables to obtain

M [h] = 64
∫ 1

x=0
dx xh(x)

∫ x

u=0
du h(u) − (4A[h] + 16)

∫ 1

x=0
dx x[h2(x)]′

+32
∫ 1

x=0
dx x[h2(x)]′

∫ 1

u=x
du uh′(u) . (19)

6.5.2 Preparing M [h] for Functional Differentiation

It will be necessary to calculate the functional derivative of M [h]. To simplify this
procedure we use integration by parts to remove all instances of the derivative function
h′(x). Integrating by parts four times and simplifying gives the following expression:

M [h] = 64
∫ 1

x=0
dx xh(x)

∫ x

u=0
du h(u)− 4A[h] − 16

3
+ (4A[h] − 16)

∫ 1

x=0
dx h2(x)

+
32

3

∫ 1

x=0
dx xh3(x) + 32

∫ 1

x=0
dx h2(x)

∫ 1

u=x
du h(u) . (20)

6.5.3 Performing the Functional Differentiation

We must minimize M [h]
(A[h])5/2

, subject to the constraint that h(1) = 1. We impose this

constraint by introducing a Lagrange multiplier λ:

D[h] =
M [h]

(A[h])5/2
+ [h(1) − 1]λ .

Note that if we differentiate with respect to λ, we recover the original constraint,

∂D[h]

∂λ
= 0 ⇒ h(1) = 1 .
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We will also need the functional derivative of A[h]:

δA[h]

δh(z)
=

δ

δh(z)

[

8
∫ 1

x=0
dx [h(x) − x]

]

= 8 . (21)

Calculating δM [h]/δh(z) We now calculate the functional derivative of M [h]
in (20). To prepare for functional differentiation we introduce the Heaviside step
function to remove all variables from the limits of integration. The Heaviside step
function H(x) is defined as follows:

H(x) ≡
{

1 (x ≥ 0),
0 (x < 0).

(22)

We perform the following differentiation:

δM [h]

δh(z)
=

δ

δh(z)

[

64
∫ 1

x=0
dx xh(x)

∫ 1

u=0
du h(u)H(x − u)

+ (4A[h] − 16)
∫ 1

x=0
dx h2(x) − 4A[h] − 16

3
+

32

3

∫ 1

x=0
dx xh3(x)

+32
∫ 1

x=0
dx h2(x)

∫ 1

u=0
du h(u) H(u− x)

]

= 64z
∫ z

u=0
du h(u) + 64

∫ 1

x=0
dx xh(x)

∫ 1

u=0
du δ(z − u)H(x − u) − 32

+32
∫ 1

x=0
dx h2(x) + (8A[h] − 32)h(z) + 32zh2(z)

+64h(z)
∫ 1

u=0
du h(u)H(u− z) + 32

∫ 1

x=0
dx h2(x)H(z − x) . (23)

Finally, we remove the Heaviside function and restore the limits on the integrals:

δM [h]

δh(z)
= 64z

∫ z

u=0
du h(u) + 64

∫ 1

x=z
dx xh(x) − 32 + 32

∫ 1

x=0
dx h2(x)

+ (8A[h] − 32)h(z) + 32zh2(z) + 64h(z)
∫ 1

u=z
du h(u)

+32
∫ z

x=0
dx h2(x) . (24)

Calculating δD[h]/δh(z) Now that we have obtained the functional derivative
of M [h] in (24), we can calculate the functional derivative of D[h]:

δD[h]

δh(z)
=

1

(A[h])5/2

δM [h]

δh(z)
− 5

2(A[h])7/2
8M [h] + λ δ(z − 1) . (25)

Since the only term containing a delta function is the last term, when we set δD[h]
δh(z)

= 0,

we learn that β = 0 and that h(1) = 1.
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Substituting the expressions for δM [h]
δh(z)

in (24) and M [h] in (20) into this equation,
we obtain

0 = 8A[h]z
∫ z

u=0
du h(u) + 8A[h]

∫ 1

x=z
dx xh(x) + 6A[h] − 6A[h]

∫ 1

x=0
dx h2(x)

+A[h](A[h] − 4)h(z) + 4A[h]zh2(z) + 8A[h]h(z)
∫ 1

u=z
du h(u)

+4A[h]
∫ z

x=0
dx h2(x) − 160

∫ 1

x=0
dx xh(x)

∫ x

u=0
du h(u) +

40

3

+40
∫ 1

x=0
dx h2(x) − 80

3

∫ 1

x=0
dx xh3(x)

−80
∫ 1

x=0
dx h2(x)

∫ 1

u=x
du h(u) . (26)

6.5.4 Expressing the Boundary as a Differential Equation

The integro-differential equation (26) expresses the shape of the boundary of the
optimal city. Our objective now is to convert this equation to an ordinary differential
equation. We begin by differentiating (26) with respect to z:

0 = 8zh(z)h′(z) + (A[h] − 4)h′(z) + 8
∫ z

u=0
du h(u) + 8h′(z)

∫ 1

u=z
du h(u) . (27)

Next, we introduce the function f(x), whose derivative is h(x):

f(x) ≡
∫ x

u=0
du h(u) , (28)

so that f ′(x) = h(x) and
f(0) = 0 . (29)

Note that from (2) we have

f ′(1) = h(1) = 1 . (30)

Also, (28) and (17) imply that

A[f ] = 8f(1) − 4 . (31)

Finally, substituting the function f(z) into (27) we obtain the following differential
equation:

0 = zf ′(z)f ′′(z) + [2f(1) − 1]f ′′(z) + f(z) − f ′′(z)f(z) . (32)

Note that if we evaluate this differential equation at z = 1 and z = 0, then we
obtain the two conditions

f ′′(1) = h′(1) = −1, (33)
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and
f ′′(0) = h′(0) = 0. (34)

The first of these conditions shows that the slope of the boundary curve at the point
(1, 1), where h(x) joins onto g(x) in the positive quadrant, is −1. This result implies
that the boundary curve has a continuous derivative at this point and thus there is no
cusp there. Similarly, the second of these conditions shows that the boundary curve
at the point (0, a) is level. Thus, again there is no cusp at this point. In short, the
boundary of the optimal city has no dimples.

6.5.5 Substituting f(z) Into M [h]

We now show that the functional M [h] simplifies dramatically when M [h] is evaluated
at the optimal boundary curve. We substitute f(x) into (20). Then we use the
differential equation (32) to simplify the result:

M [f ] = 64
∫ 1

x=0
dx xf ′(x)

∫ x

u=0
du f ′(u) − 4A[f ] − 16

3
+ (4A[f ] − 16)

∫ 1

x=0
dx f ′2(x)

+
32

3

∫ 1

x=0
dx xf ′3(x) + 32

∫ 1

x=0
dx f ′2(x)

∫ 1

u=x
du f ′(u) . (35)

Performing the indicated integrations and doing repeated integration by parts, we
simplify this equation to

M [f ] = 64
∫ 1

x=0
dx xf ′(x)f(x) − 4A[f ] − 32f(1) + 16

+{4A[f ] + 32f(1) − 16}
∫ 1

x=0
dx f ′2(x) − 64

∫ 1

x=0
dx x2f ′2(x)f ′′(x)

+64
∫ 1

x=0
dx xf(x)f ′(x)f ′′(x) . (36)

Next, in the last two integrals we use the differential equation (32) to replace the
expression f ′′(x)f(x)− xf ′(x)f ′′(x), which is cubic in f , by the quadratic expression
[2f(1) − 1]f ′′(x) + f(x). The resulting formula for M [f ] simplifies, after further
integration by parts, to

M [f ] = −64
∫ 1

x=0
dx f 2(x) + 64f 2(1) , (37)

where we have used the formula A[f ] = −4 + 8f(1) in (31).

6.5.6 Numerical Results

We have now completed the analytical work and reduced the problem of finding the
boundary of the optimal city to a numerical computation. The numerical procedure
is a follows: First, we guess a value, say c, for f(1). Also, we know from (30) that
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f ′(1) = 1. From these two initial conditions we solve the differential equation (32)
numerically to obtain the value of f(0). But, from (29) we know that f(0) = 0.
By repeated shooting, we determine the value of c that gives the result f(0) = 0.
When we achieve this condition, we then learn that the value of a = f ′(0) = h(0) =
1.463 110 117 728 [see (2)]. The shape of the boundary h(x) is given by the derivative
of f(x): h(x) = f ′(x). Once we have found f(x), we then compute the value of D[f ]
from

D[f ] =
M [f ]

(A[f ])5/2
=

64f 2(1) − 64
∫ 1
x=0 dx f 2(x)

[8f(1) − 4]5/2
. (38)
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Figure 17: Plot of f(x) for 0 ≤ x ≤ 1.

Our numerical analysis reveals that the minimum value of D[f ] is 0.650 245 952 951,
which is about a 2.6 parts-per million improvement in the optimal value of D obtained
by using the one-parameter family of functions w(x) = (2 − |x|p)1/p. The optimal
function f(x) is displayed in Figure 17, and the optimal boundary curve w(x) is
shown in Figure 18. Note that f(0) = 0 and that f ′(1) = 1. By repeated iteration
(shooting) we find that f(1) = 1.311 794 482 332. The derivative of the plotted func-
tion f(x) gives the boundary of the optimal city and for this city the value of D is
0.650 245 952 951.

The function w(x) is composed of h(x) for 0 ≤ x ≤ 1 and g(x) = h−1(x) for
x ≥ 1. Note that h(0) = f ′(0) = a = 1.463 110 117 728. The number a is the value of
x at which g(x) crosses the x axis. The function h continues onto the function g at
the point (1, 1), which is marked by a + sign. For this optimal boundary curve the
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Figure 18: Plot of the function w(x) for x ≥ 0.

(minimum) numerical value of the functional D is 0.650 245 952 951. For purposes of
comparison, the dotted line is a quarter circle, illustrating that the optimal city is
close to circular.

6.6 Discussion and Conclusions on Continuous Problem

The principal conclusion that can be drawn from the calculations in this section is
that if a city is tightly clustered and convex, then it is extremely close to optimal;
that is, its value of D[w], where w is the boundary curve of the city, is close (just a few
percent off) to the optimal value 0.650 245 952 951. Thus, an allocation of computer
processors, so long as they are tightly bunched and convex, will be close to optimal
as measured by the average pairwise Manhattan distance metric.

We already know from Table 6.4.4 that if a city departs markedly from convexity
(say, it is shaped like an astroid) then it will be far from optimal. It is also interesting
that if the city has holes then the corresponding value of the functional D can also
increase significantly. To illustrate we consider the case of an annular city, whose
outside diameter is 1 and whose inside diameter is r. Note that the hole of radius r
in the center of the city may be one of two possible types, a park or a lake. If the hole
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is a park, then the notion of the Manhattan distance between two points in the city
does not change (one can walk through the park). If the hole is a lake, one must walk
around it, and the definition of the distance between two points in the city changes
accordingly.

Let us consider the simpler case of a park. The area of this city is A(r) = π(1−r2).
Also, we calculate that the pairwise Manhattan distance is

M(r) =
512

45

(

1 + r5
)

− 8

3
π
(

2r2 + r4
)

2F1

(

−1

2
,
1

2
; 3; r2

)

+
2

9
π
(

r4 − r6
)

2F1

(

1

2
,
3

2
; 4; r2

)

,

where 2F1(a, b; c; z) is the hypergeometric function [48, 38]. The value of M(r) for this
city reduces to that in Table 6.4.4 for a disk when r = 0 and it vanishes when r = 1
(the annulus becomes a circle). For this city, the value of D(r) in (5), which measures
the optimality of the city shape, grows rapidly with r: D(0) ≈ 0.650, D(0.3) ≈ 0.713,
D(0.6) ≈ 0.947, D(0.9) ≈ 1.998, D(0.99) ≈ 6.531, and limr→1 D(r) = ∞.

There are many interesting possible continuations of this study. For example,
one can consider cities whose dimension is higher than two. For such cities, the
boundary is a surface rather than a curve, and thus the boundary is described by a
partial differential equation rather than an ordinary differential equation. Hence, the
calculations are much more elaborate and have not been considered here.

Another possible generalization of this work is to consider metrics other than the
Manhattan distance (p-norms where p 6= 1). (Of course, the Euclidean metric, for
which p = 2 is trivial, and in this case the optimal city is a disk.) Additionally,
one could minimize the average of the squares of the pairwise distances for the city.
Squares of distances are commonly considered in clustering applications.
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7 Scheduling

The primary focus of research in job scheduling has been to increase utilization and
improve desired user metrics such as turnaround time and slowdown. Turnaround
time is equal to waiting time plus runtime. Slowdown is turnaround time divided
by runtime. Very little research so far has addressed fairness in job scheduling. The
Cplant scheduler uses a “fair share” measure to order jobs in the queue, but how fair
is the scheduler?

One possible approach to assessing fairness is as follows: For each job, find the
number of jobs with a higher user usage-count that are serviced while the job waits.
The problem with that approach is how do we account for “benign” backfilling that
uses slots in the schedule not usable by this job? Instead, we propose assigning a
“fair-start” time to a job when it is submitted by generating a non-backfilling, in
order schedule based on fairness priority. If a job’s actual start time does not exceed
its fair-start time, the job is considered to have been fairly treated. Otherwise, it is
considered to have been unfairly treated.

The original Cplant scheduler implemented no guarantee backfilling. With no
guarantee backfilling none of the jobs submitted gets a scheduler reservation. There-
fore, there is no blocking of jobs that can backfill onto open processors. We have
studied the maximum average utilization of parallel computers in the absence of
blocking [69].

To preventing starvation, the Cplant scheduler will drain the machine when a job
has been waiting for more than twenty-four hours. During the time that Cplant is
being drained, many processors can go idle while jobs that can fit on the machine
are waiting. In order to increase processor utilization and decrease job waiting times,
aggressive/easy backfilling was added to the Cplant scheduler drain [58]. With ag-
gressive backfilling, a job that can fit on Cplant is scheduled during the time that the
machine is being drained as long as the time requested for the job is no greater than
the maximum remaining time for the jobs running on the machine. Therefore, one
job gets a reservation and backfilling can be blocked by that job.

When Cplant became oversubscribed, the no guarantee backfilling and starvation
drain made Cplant “unfair”. We studied the consequences to “fairness” of various
alternatives to the above schedular. This work is also reported in [93]. Some of this
work was funded by CSRF and the CSRI.

This project also supported research into scheduling by Bunde [19]. This work
began by showing a structural similarity between the uniprocessor Shortest Remain-
ing Processing Time (SRPT) and Shortest Processing Time (SPT) schedules. The
structural similarity is then used to prove that SPT is (∆+1)/2-competitive for total
flow, where ∆ is the ratio between the lengths of the longest and shortest jobs. This
ratio is the best-possible for a nonpreemptive algorithm and an improvement on the
ratio of ∆ + 1 shown by Epstein and van Stee [37]. In the multiprocessor setting, the
same argument gives an O(∆ log min{n, ∆})-competitive nonpreemptive algorithm,
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the first nonpreemptive algorithm shown to be competitive for flow. A number of
lower bounds are also shown.

Bunde [19] also considers offline scheduling by busy algorithms, i.e. those which
can never be unnecessarily idle. This study was directly motivated by Sandia’s desire
to keep machines busy whenever possible. Unfortunately, it is shown that neither
uniprocessor nor multiprocessor total flow can be approximated to within a factor of
either ∆1−ε or n1−ε for any constant ε > 0 unless P=NP. The proof of these facts
closely follows proofs by Kellerer et al. [61] and Leonardi et al. [66].

The remainder of this section is organized as follows. Subsection 7.1 describes
the baseline Cplant scheduler. Subsection 7.2 describes some alternatives to increase
fairness. Subsection 7.3 describes our simulation environment. Subsection 7.4 gives
our results. Subsection 7.5 gives our conclusions.

7.1 Baseline Cplant Scheduler

The baseline Cplant scheduler implements the following:

• no guarantee backfilling,

• fair share queue priority using decaying node-hours, and

• jobs with a wait time of greater than twenty-four hours are considered to be
starving and are treated as follows:

– they are placed in a virtual queue by receiving a higher priority than non-
starving jobs,

– they are sorted in first come first serve (FCFS) order instead of by fair
share, and

– the head of the queue has a reservation (aggressive backfilling).

The negative implications of the baseline Cplant schedular are that jobs do not neces-
sarily run in fair share order, unfair use of the machine is allowed by the no guarantee
backfilling and FCFS “starvation queue” order, and unbounded wait times and starva-
tion forces system administrators to start jobs manually. However, “good” utilization
and average user metrics are likely.

7.2 Increasing Fairness

Suggestions to improve fairness include limiting runtime, increasing the starvation
limit from twenty-four to seventy-two hours or greater, not allowing a “starvation
reservation” for users who are “hogging” the machine, and using conservative back-
filling. Limiting runtime would cap runtimes at seventy-two hours. This improves
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fairness and user metrics by allowing “preemption”. Scripts have already been devel-
oped to help ease the potential burden on the user, and minimal impact is expected
on fair long jobs.

Increasing the starvation limit from twenty-four to seventy-two hours or greater
reduces the “unfairness” due to the FCFS starvation queue. This would still prevent
jobs from starving and minimize impact on standard average user metrics and uti-
lization is expected. However, this does not address the lack of fairness due to no
guarantees.

Not allowing a starvation reservation for users who are hogging the machine intro-
duces fairness to the “virtual” starvation queue. Again, minimal impact on standard
user metrics and utilization is expected. This is a simple change to the existing
scheduler and minimal impact to the normal users.

Using conservative backfilling would eliminate starvation altogether by giving each
job a reservation when it arrives. This would give a deterministic worst case start
time upon submittal of each job. Conservative backfilling would have a FCFS “feel”,
because each job receives an initial reservation in arrival order. Backfill would be
sorted by “fair-share”, but an unfair job can still delay a fair job.

To remove the FCFS feel of conservative backfilling, dynamic reservations could
be recompute based on fairness when a new job arrives. A job can never delay a
more “fair” job. Starvation is possible, but the user has control over it. If a user
does not submit additional jobs or add artificial dependencies, progress in the queue
is guaranteed. This implements the spirit of the fair share policy. No unfair job will
ever delay a more fair job

7.3 Simulation Environment

We built an event-driven simulator to test the fairness strategies from Subsection 7.2.
The objective of the simulator is to exhibit tendencies rather than to predict be-
haviors precisely. Our simulations suggest that the alternatives individually and in
combination tend to increase fairness. A variety of performance metrics gauge the
performance of the alternatives.

The simulator was run on traces from December 2002–June 2003. These trace files
contain data about all jobs submitted to Ross, a Cplant machine configured as a three
dimensional mesh with 1024 compute processors. The trace file includes the times
that the jobs were dispatched to the scheduler, the numbers of processors requested,
the running times requested, and the actual running times.

7.4 Results

Simulation results are presented for the baseline Cplant policy, small tweaks to the
baseline, and more fundamental changes to the baseline.
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7.4.1 Small Tweaks

The baseline Cplant policy has a starvation limit of 24 hours. Any job can starve, and
there is no maximum runtime. We made small tweaks to each of these individually
and all of them combined.

Figure 19: The percentage of jobs that missed their fair start time for the baseline
and the small tweaks.

The starvation limit was changed to 72 hours. The runtime was limited to 72
hours, and only fair jobs could starve. The names in the legends for Figures 19 and
20 give these parameter choices in this order. All the changes reduced the percentage
of jobs that missed their fair start time. However, combining all three “enhancements”
shows the most improvement.

Loss of capacity is generally slightly lower. We report loss of capacity instead
of utilization because in simulations, utilization is distorted by the tail effect of the
last jobs run. Loss of capacity is the percentage of nodes idle when the smallest job
waiting cannot start.

Figures 21 and 22 show each users wait time as a function of their usage for the
baseline and all three tweaks combined. Note that “heavy” users with high wait time
under the baseline benefit when all three tweaks are combined. Even though all three
tweaks combined did manage to reduce the “extreme” wait time for mid-range users,
a very light user actually gets worst. This still seems unfair.

7.4.2 Fundamental Changes

Conservative backfilling and dynamic reservations are the more fundamental changes
described in Subsection 7.2. Since the 72 hour runtime limit is compatible with these
changes, we also consider it with these changes.
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Figure 20: The loss of capacity for the baseline and the small tweaks.

Figure 21: The average waiting time for each user as a function of their usage in
processor seconds for the baseline and all tweaks combined.
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Figure 22: The difference in average waiting time for each user as a function of their
usage in processor seconds for the baseline and all tweaks combined.

Figure 23: The percentage of jobs that missed their fair start time for the baseline,
all three tweaks combined, and more fundamental changes.
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Figure 24: The loss of capacity for the baseline, all three tweaks combined, and more
fundamental changes.

Figure 23 and 24 show the results for the baseline, the best policy from Subsec-
tion 7.4.1, and these more fundamental changes. Figure 23 shows that it is possible
to further reduce the percentage of jobs that miss their fair start time with conserva-
tive backfilling and dynamic reservations. However, conservative backfilling without
dynamic reservations can be bad for fairness, and there is a small increase (approxi-
mately three percent) in loss of capacity (for dynamic reservations).

Figures 25 and 26 show that heavy users are appropriately penalized, and light
users are given better treatment. However, medium users can still perform worse
than heavy users.

Even though the seventy-two hour runtime limit increased the number of jobs that
missed their fair start time, Figures 27 and 28 show that when the seventy-two hour
runtime limit is added to conservative backfilling with dynamic reservations, most
users improve, and there is not dramatic increase in wait time.

7.5 Conclusions on Scheduling

We have proposed a new way to quantitatively assessing how well fairness is imple-
mented by a scheduling policy. The current Cplant scheduling policy causes unfair
treatment of about 10% of jobs. The effect of several possible changes to schedul-
ing policy were evaluated through simulations. These changes included changing the
starvation threshold (from 24 to 72 hours), imposing a maximum time limit for jobs,
disallowing unfair jobs from the starvation queue, and using reservations for all jobs
(conservative backfill variations) instead of a starvation queue mechanism. Simula-
tions show that modifications can reduce unfairness to under 3% of jobs.
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Figure 25: The average waiting time for each user as a function of their usage in
processor seconds for the baseline and conservative backfilling with dynamic reserva-
tions.

Figure 26: The difference in average waiting time for each user as a function of their
usage in processor seconds for the baseline and conservative backfilling with dynamic
reservations.
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Figure 27: The average waiting time for each user as a function of their usage in pro-
cessor seconds for the baseline and conservative backfilling with dynamic reservations
and seventy-two hour runtime limits.

Figure 28: The difference in average waiting time for each user as a function of their
usage in processor seconds for the baseline and conservative backfilling with dynamic
reservations and seventy-two hour runtime limits.
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8 Conclusions

For commodity-based parallel computing systems, we have provided algorithmic sup-
port in three areas: routing, allocation and scheduling. Based on a generalization
of Dally and Seitz routing, we provided shortest-path routes for Antarctica. Recent
experiments on Antarctica indicate that these routes may decrease completion time
for some application codes by at least fifty percent over the routes generated by Myri-
com’s simple routes program. Based on this work in Cplant routing, we were also
able to have an impact on the routing for Red Storm. The Red Storm routing work
was funded by CSRF.

Our accomplishments in allocation can be grouped into one of three areas: one-
dimensional reduction, minimizing the number of communication hops, and the con-
tinuum problem. Preliminary simulations and Cplant experiments indicate that both
space-filling curves and one-dimensional packing improve processor locality compared
to the sorted free list strategy previously used on Cplant. These new allocation strate-
gies are implemented in Release 2.0 of the Cplant System Software that was phased
into the Cplant systems at Sandia by May 2002.

Experimental results then demonstrated that the average number of communica-
tion hops between the processors allocated to a job strongly correlates with the job’s
completion time. To minimize the number of communication hops, we achieved the
following results: we found a linear-time exact algorithm in one dimension. We found
an efficient two-approximation algorithm in d dimensions, for any constant d. We also
found some lower bounds for this algorithm. We found two efficient polynomial-time
approximation schemes in two dimensions. We have formulated the exact problem in
d dimensions as a quadratic program which can be solved as either a semidefinite pro-
gram or an integer linear program. Because the two-approximation balances solution
quality and simplicity, we believe this is the correct processor-allocation algorithm
to implement in supercomputers. Indeed, it is slated for inclusion in Cplant System
Software, Version 2.1, to be released. In one preliminary test with an application
code, the two-approximation allocation ran sixteen percent faster than the allocation
given by the one-dimensional reduction above [47].

For the continuum problem, we formulated this optimization problem in mathe-
matical terms. Then we considered a one-parameter family of clusters and found the
shape of the optimal cluster in this limited family. From this calculation we saw that
the optimal city is not circular. Next we carried out a full variational calculation and
determined an interesting nonlinear differential equation satisfied by the boundary of
the optimal cluster. The optimal cluster is nearly circular in shape but is not a disk.
Our principal conclusions are that so long as the allocation of processors are clustered
in a tight shape having no holes of only small holes, the allocation will be extremely
close to optimal.

In scheduling, we proposed a new way to quantitatively assess how well fair-
ness is implemented by a scheduling policy. The current Cplant scheduling policy
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causes unfair treatment of ten percent of jobs. The effect of several possible changes
to scheduling policy were evaluated through simulations. These changes included
changing the starvation threshold (from twenty-four to seventy-two hours), imposing
a maximum time limit for jobs, disallowing unfair jobs from the starvation queue,
and using reservations for all jobs (conservative backfill variations) instead of a star-
vation queue mechanism. Simulations show that modifications can reduce unfairness
to under three percent of jobs. Some of this work was also supported by CSRF and
the CSRI.
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